On the measure of M-rough approximation of L-fuzzy sets

被引:1
|
作者
Sang-Eon Han
Alexander Šostak
机构
[1] Chonbuk National University,Department of Mathematics Education, Institute of Pure and Applied Mathematics
[2] University of Latvia,Institute of Mathematics and CS
[3] University of Latvia,Faculty of Physics and Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
-fuzzy set; Upper ; -rough approximation operator; Lower ; -rough approximation operator; Measure of inclusion; Measure of ; -rough approximation of an ; -fuzzy set; Ditopology; -ditopology;
D O I
暂无
中图分类号
学科分类号
摘要
We develop an approach allowing to measure the “quality” of rough approximation of fuzzy sets. It is based on what we call “an approximative quadruple” Q=(L,M,φ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=(L,M,\varphi ,\psi )$$\end{document} where L and M are complete lattice commutative monoids and φ:L→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : L \rightarrow M$$\end{document}, ψ:M→L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi : M \rightarrow L$$\end{document} are mappings satisfying certain conditions. By realization of this scheme, we get measures of upper and lower rough approximation for L-fuzzy subsets of a set equipped with an M-preoder R:X×X→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R: X\times X \rightarrow M$$\end{document}. In case R is symmetric, these measures coincide. Basic properties of such measures are studied. Besides, we present an interpretation of measures of rough approximation in terms of LM-fuzzy topologies.
引用
下载
收藏
页码:3843 / 3855
页数:12
相关论文
共 50 条
  • [31] On three types of L-fuzzy β-covering-based rough sets
    Li, Wei
    Yang, Bin
    Qiao, Junsheng
    FUZZY SETS AND SYSTEMS, 2023, 461
  • [32] Several L-fuzzy variable precision rough sets and their axiomatic characterizations
    Jin, Qiu
    Li, Ling-Qiang
    SOFT COMPUTING, 2023, 27 (22) : 16429 - 16448
  • [33] Several L-fuzzy variable precision rough sets and their axiomatic characterizations
    Qiu Jin
    Ling-Qiang Li
    Soft Computing, 2023, 27 : 16429 - 16448
  • [34] L-FUZZY APPROXIMATION SPACES AND L-FUZZY TOPOLOGICAL SPACES
    Ramadan, A. A.
    Elkordy, E. H.
    El-Dardery, M.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2016, 13 (01): : 115 - 129
  • [35] Topological and lattice structures of L-fuzzy rough sets determined by lower and upper sets
    Ma, Zhen Ming
    Hui, Bao Qing
    INFORMATION SCIENCES, 2013, 218 : 194 - 204
  • [36] New results on single axioms for L-fuzzy rough approximation operators
    Wang, Chun Yong
    Zhang, Xinguang
    Wu, Yonghong
    FUZZY SETS AND SYSTEMS, 2020, 380 : 131 - 149
  • [37] FUZZY INTEGRALS ON L-FUZZY SETS
    QIAO, Z
    FUZZY SETS AND SYSTEMS, 1990, 38 (01) : 61 - 79
  • [38] Degrees of M-fuzzy families of independent L-fuzzy sets
    Zhang, S. Y.
    Li, S. G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2020, 17 (01): : 53 - 64
  • [39] Hesitant L-Fuzzy Sets
    Dehmiry, A. H.
    Mashinchi, M.
    Mesiar, R.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (05) : 1027 - 1042
  • [40] L-FUZZY SETS AND CODES
    SESELJA, B
    TEPAVCEVIC, A
    VOJVODIC, G
    FUZZY SETS AND SYSTEMS, 1993, 53 (02) : 217 - 222