On the measure of M-rough approximation of L-fuzzy sets

被引:1
|
作者
Sang-Eon Han
Alexander Šostak
机构
[1] Chonbuk National University,Department of Mathematics Education, Institute of Pure and Applied Mathematics
[2] University of Latvia,Institute of Mathematics and CS
[3] University of Latvia,Faculty of Physics and Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
-fuzzy set; Upper ; -rough approximation operator; Lower ; -rough approximation operator; Measure of inclusion; Measure of ; -rough approximation of an ; -fuzzy set; Ditopology; -ditopology;
D O I
暂无
中图分类号
学科分类号
摘要
We develop an approach allowing to measure the “quality” of rough approximation of fuzzy sets. It is based on what we call “an approximative quadruple” Q=(L,M,φ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=(L,M,\varphi ,\psi )$$\end{document} where L and M are complete lattice commutative monoids and φ:L→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : L \rightarrow M$$\end{document}, ψ:M→L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi : M \rightarrow L$$\end{document} are mappings satisfying certain conditions. By realization of this scheme, we get measures of upper and lower rough approximation for L-fuzzy subsets of a set equipped with an M-preoder R:X×X→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R: X\times X \rightarrow M$$\end{document}. In case R is symmetric, these measures coincide. Basic properties of such measures are studied. Besides, we present an interpretation of measures of rough approximation in terms of LM-fuzzy topologies.
引用
下载
收藏
页码:3843 / 3855
页数:12
相关论文
共 50 条
  • [21] L-Fuzzy Rough Proximity Spaces and Their Relationship with L-Fuzzy Rough Grills
    Tiwari, Surabhi
    Kumar, Virendra
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2024,
  • [22] L-Fuzzy Rough Approximation Operators Based on Residuated Lattices
    Li, Fei
    Zhang, Zhen-Liang
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (05) : 877 - 892
  • [23] The Basis Algebra and Approximation Operator in L-Fuzzy Rough Set
    Wu Zhengjiang
    Du Weifeng
    Qin Keyun
    ISIP: 2009 INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING, PROCEEDINGS, 2009, : 87 - +
  • [24] L-FUZZY SETS
    GOGUEN, JA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 18 (01) : 145 - &
  • [25] L-fuzzy generalized neighborhood system-based pessimistic L-fuzzy rough sets and its applications
    Lu Gao
    Bing-Xue Yao
    Ling-Qiang Li
    Soft Computing, 2023, 27 : 7773 - 7788
  • [26] L-fuzzy generalized neighborhood system-based pessimistic L-fuzzy rough sets and its applications
    Gao, Lu
    Yao, Bing-Xue
    Li, Ling-Qiang
    SOFT COMPUTING, 2023, 27 (12) : 7773 - 7788
  • [27] Fuzzy soft sets as L-fuzzy sets
    Shi, Fu-Gui
    Fan, Chao-Zan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (04) : 5061 - 5066
  • [28] Intuitionistic fuzzy sets and L-fuzzy sets
    Wang, GJ
    He, YY
    FUZZY SETS AND SYSTEMS, 2000, 110 (02) : 271 - 274
  • [29] L-fuzzy valued inclusion measure, L-fuzzy similarity and L-fuzzy distance
    Kehagias, A
    Konstantinidou, M
    FUZZY SETS AND SYSTEMS, 2003, 136 (03) : 313 - 332
  • [30] L-fuzzy sets and intuitionistic fuzzy sets
    Hatzimichailidis, Anestis G.
    Papadopoulos, Basil K.
    COMPUTATIONAL INTELLIGENCE BASED ON LATTICE THEORY, 2007, 67 : 325 - +