We develop an approach allowing to measure the “quality” of rough approximation of fuzzy sets. It is based on what we call “an approximative quadruple” Q=(L,M,φ,ψ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q=(L,M,\varphi ,\psi )$$\end{document} where L and M are complete lattice commutative monoids and φ:L→M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varphi : L \rightarrow M$$\end{document}, ψ:M→L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\psi : M \rightarrow L$$\end{document} are mappings satisfying certain conditions. By realization of this scheme, we get measures of upper and lower rough approximation for L-fuzzy subsets of a set equipped with an M-preoder R:X×X→M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R: X\times X \rightarrow M$$\end{document}. In case R is symmetric, these measures coincide. Basic properties of such measures are studied. Besides, we present an interpretation of measures of rough approximation in terms of LM-fuzzy topologies.