On the measure of M-rough approximation of L-fuzzy sets

被引:1
|
作者
Sang-Eon Han
Alexander Šostak
机构
[1] Chonbuk National University,Department of Mathematics Education, Institute of Pure and Applied Mathematics
[2] University of Latvia,Institute of Mathematics and CS
[3] University of Latvia,Faculty of Physics and Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
-fuzzy set; Upper ; -rough approximation operator; Lower ; -rough approximation operator; Measure of inclusion; Measure of ; -rough approximation of an ; -fuzzy set; Ditopology; -ditopology;
D O I
暂无
中图分类号
学科分类号
摘要
We develop an approach allowing to measure the “quality” of rough approximation of fuzzy sets. It is based on what we call “an approximative quadruple” Q=(L,M,φ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=(L,M,\varphi ,\psi )$$\end{document} where L and M are complete lattice commutative monoids and φ:L→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : L \rightarrow M$$\end{document}, ψ:M→L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi : M \rightarrow L$$\end{document} are mappings satisfying certain conditions. By realization of this scheme, we get measures of upper and lower rough approximation for L-fuzzy subsets of a set equipped with an M-preoder R:X×X→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R: X\times X \rightarrow M$$\end{document}. In case R is symmetric, these measures coincide. Basic properties of such measures are studied. Besides, we present an interpretation of measures of rough approximation in terms of LM-fuzzy topologies.
引用
收藏
页码:3843 / 3855
页数:12
相关论文
共 50 条
  • [1] On the measure of M-rough approximation of L-fuzzy sets
    Han, Sang-Eon
    Sostak, Alexander
    [J]. SOFT COMPUTING, 2018, 22 (12) : 3843 - 3855
  • [2] On the Measure of Many-Level Fuzzy Rough Approximation for L-Fuzzy Sets
    Sostak, Alexander
    Uljane, Ingrida
    Elkins, Aleksandrs
    [J]. COMPUTATIONAL INTELLIGENCE AND MATHEMATICS FOR TACKLING COMPLEX PROBLEMS, 2020, 819 : 183 - 190
  • [3] On L-fuzzy rough sets
    Radzikowska, AM
    Kerre, EE
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 526 - 531
  • [4] Fuzzy rough sets are intuitionistic L-fuzzy sets
    Coker, D
    [J]. FUZZY SETS AND SYSTEMS, 1998, 96 (03) : 381 - 383
  • [5] A construction of an L-fuzzy valued measure of L-fuzzy sets
    Ruzha, Vechislav
    Asmuss, Svetlana
    [J]. PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1735 - 1739
  • [7] Axiomatic characterizations of L-fuzzy rough sets by L-fuzzy unions and L-fuzzy intersections
    Wei, Xiaowei
    Pang, Bin
    Mi, Ju-Sheng
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2022, 51 (03) : 277 - 312
  • [8] Topological structures of L-fuzzy rough sets and similarity sets of L-fuzzy relations
    Wang, Chun Yong
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 83 : 160 - 175
  • [9] Metric-based L-fuzzy rough sets: Approximation operators and definable sets
    Yao, Wei
    She, Yanhong
    Lu, Ling-Xia
    [J]. KNOWLEDGE-BASED SYSTEMS, 2019, 163 : 91 - 102
  • [10] M-valued Measure of Roughness for Approximation of L-fuzzy Sets and Its Topological Interpretation
    Han, Sang-Eon
    Sostak, Alexander
    [J]. COMPUTATIONAL INTELLIGENCE, IJCCI 2014, 2016, 620 : 251 - 266