Morrey–Sobolev Extension Domains

被引:0
|
作者
Pekka Koskela
Yi Ru-Ya Zhang
Yuan Zhou
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
[2] Beijing University of Aeronautics and Astronautics,Department of Mathematics
来源
关键词
Morrey–Sobolev space; Extension; LLC; Uniform domain; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We show that every uniform domain of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {R}}}^n}$$\end{document} with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} is a Morrey–Sobolev W1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {W}}^{1,\,p}$$\end{document}-extension domain for all p∈[1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,\,n)$$\end{document}, and moreover, that this result is essentially the best possible for each p∈[1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,\,n)$$\end{document} in the sense that, given a simply connected planar domain or a domain of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {R}}}^n}$$\end{document} with n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} that is quasiconformal equivalent to a uniform domain, if it is a W1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {W}}^{1,\,p} $$\end{document}-extension domain, then it must be uniform.
引用
收藏
页码:1413 / 1434
页数:21
相关论文
共 50 条
  • [21] UNIFORM, SOBOLEV EXTENSION AND QUASI-CONFORMAL CIRCLE DOMAINS
    HERRON, DA
    KOSKELA, P
    JOURNAL D ANALYSE MATHEMATIQUE, 1991, 57 : 172 - 202
  • [22] Sobolev Embedding Theorem for the Sobolev-Morrey spaces
    Burenkov, V. I.
    Kydyrmina, N. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2016, 83 (03): : 32 - 40
  • [23] Uhlenbeck’s Decomposition in Sobolev and Morrey–Sobolev Spaces
    Paweł Goldstein
    Anna Zatorska-Goldstein
    Results in Mathematics, 2018, 73
  • [24] Traces of Sobolev functions on fractal type sets and characterization of extension domains
    Hajlasz, P
    Martio, O
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 143 (01) : 221 - 246
  • [25] Uhlenbeck's Decomposition in Sobolev and Morrey-Sobolev Spaces
    Goldstein, Pawel
    Zatorska-Goldstein, Anna
    RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [26] THE COMPOSITION OPERATOR IN SOBOLEV MORREY SPACES
    Kydyrmina, N.
    de Cristoforis, M. Lanza
    EURASIAN MATHEMATICAL JOURNAL, 2016, 7 (02): : 50 - 67
  • [27] Sobolev embeddings in grand Morrey spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2367 - 2381
  • [28] On extrapolation of Sobolev and Morrey type imbeddings
    Krbec, M
    Schmeisser, HJ
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 297 - 321
  • [29] THE EXTENSION OF FUNCTIONS FROM SOBOLEV SPACES FOR IRREGULAR DOMAINS WITH PRESERVATION OF SMOOTHNESS INDEX
    FAIN, BL
    DOKLADY AKADEMII NAUK SSSR, 1985, 285 (02): : 296 - 301
  • [30] Two-Sided Boundary Points of Sobolev Extension Domains on Euclidean Spaces
    Garcia-Bravo, Miguel
    Rajala, Tapio
    Takanen, Jyrki
    POTENTIAL ANALYSIS, 2024, 60 (03) : 1249 - 1270