Uhlenbeck’s Decomposition in Sobolev and Morrey–Sobolev Spaces

被引:0
|
作者
Paweł Goldstein
Anna Zatorska-Goldstein
机构
[1] University of Warsaw,Faculty of Mathematics, Informatics and Mechanics
来源
Results in Mathematics | 2018年 / 73卷
关键词
Primary 35A25; Secondary 35J60; 70S15;
D O I
暂无
中图分类号
学科分类号
摘要
We present a self-contained proof of Rivière’s theorem on the existence of Uhlenbeck’s decomposition for Ω∈Lp(Bn,so(m)⊗Λ1Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in L^p(\mathbb {B}^n,so(m)\otimes \Lambda ^1\mathbb {R}^n)$$\end{document} for p∈(1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,n)$$\end{document}, with Sobolev type estimates in the case p∈[n/2,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in [n/2,n)$$\end{document} and Morrey–Sobolev type estimates in the case p∈(1,n/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,n/2)$$\end{document}. We also prove an analogous theorem in the case when Ω∈Lp(Bn,TCO+(m)⊗Λ1Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in L^p( \mathbb {B}^n, TCO_{+}(m) \otimes \Lambda ^1\mathbb {R}^n)$$\end{document}, which corresponds to Uhlenbeck’s decomposition with conformal gauge group.
引用
收藏
相关论文
共 50 条
  • [1] Uhlenbeck's Decomposition in Sobolev and Morrey-Sobolev Spaces
    Goldstein, Pawel
    Zatorska-Goldstein, Anna
    RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [2] Sobolev Embedding Theorem for the Sobolev-Morrey spaces
    Burenkov, V. I.
    Kydyrmina, N. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2016, 83 (03): : 32 - 40
  • [3] On Morrey's inequality in Sobolev-Slobodeckii spaces
    Brasco, Lorenzo
    Prinari, Francesca
    Sk, Firoj
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (09)
  • [4] THE COMPOSITION OPERATOR IN SOBOLEV MORREY SPACES
    Kydyrmina, N.
    de Cristoforis, M. Lanza
    EURASIAN MATHEMATICAL JOURNAL, 2016, 7 (02): : 50 - 67
  • [5] Sobolev embeddings in grand Morrey spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (12) : 2367 - 2381
  • [6] Morrey-Sobolev Spaces on Metric Measure Spaces
    Yufeng Lu
    Dachun Yang
    Wen Yuan
    Potential Analysis, 2014, 41 : 215 - 243
  • [7] Morrey-Sobolev Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    POTENTIAL ANALYSIS, 2014, 41 (01) : 215 - 243
  • [8] Sobolev–Morrey spaces related to an ultraparabolic equation
    Sergio Polidoro
    Maria Alessandra Ragusa
    manuscripta mathematica, 1998, 96 : 371 - 392
  • [9] On Stein's extension operator preserving Sobolev-Morrey spaces
    Lamberti, Pier Domenico
    Violo, Ivan Yuri
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (08) : 1701 - 1715
  • [10] Hardy-Sobolev inequality for Sobolev functions in central Herz-Morrey spaces
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (06) : 1148 - 1159