Morrey-Sobolev Spaces on Metric Measure Spaces

被引:0
|
作者
Yufeng Lu
Dachun Yang
Wen Yuan
机构
[1] Laboratory of Mathematics and Complex Systems,School of Mathematical Sciences, Beijing Normal University
[2] Ministry of Education,Mathematisches Institut
[3] Friedrich-Schiller-Universität Jena,undefined
来源
Potential Analysis | 2014年 / 41卷
关键词
Sobolev space; Morrey space; Upper gradient; Hajłasz gradient; Metric measure space; Maximal operator; Primary 46E35; Secondary 42B25; 42B35; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, the authors introduce the Newton-Morrey-Sobolev space on a metric measure space (𝒳, d, μ). The embedding of the Newton-Morrey-Sobolev space into the Hölder space is obtained if 𝒳 supports a weak Poincaré inequality and the measure μ is doubling and satisfies a lower bounded condition. Moreover, in the Ahlfors Q-regular case, a Rellich-Kondrachov type embedding theorem is also obtained. Using the Hajłasz gradient, the authors also introduce the Hajłasz-Morrey-Sobolev spaces, and prove that the Newton-Morrey-Sobolev space coincides with the Hajłasz-Morrey-Sobolev space when μ is doubling and 𝒳 supports a weak Poincaré inequality. In particular, on the Euclidean space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb R}^n$\end{document}, the authors obtain the coincidence among the Newton-Morrey-Sobolev space, the Hajłasz-Morrey-Sobolev space and the classical Morrey-Sobolev space. Finally, when (𝒳, d) is geometrically doubling and μ a non-negative Radon measure, the boundedness of some modified (fractional) maximal operators on modified Morrey spaces is presented; as an application, when μ is doubling and satisfies some measure decay property, the authors further obtain the boundedness of some (fractional) maximal operators on Morrey spaces, Newton-Morrey-Sobolev spaces and Hajłasz-Morrey-Sobolev spaces.
引用
收藏
页码:215 / 243
页数:28
相关论文
共 50 条
  • [1] Morrey-Sobolev Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    [J]. POTENTIAL ANALYSIS, 2014, 41 (01) : 215 - 243
  • [2] Uhlenbeck's Decomposition in Sobolev and Morrey-Sobolev Spaces
    Goldstein, Pawel
    Zatorska-Goldstein, Anna
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [3] Fractional Hajlasz-Morrey-Sobolev spaces on quasi-metric measure spaces
    Yuan, Wen
    Lu, Yufeng
    Yang, Dachun
    [J]. STUDIA MATHEMATICA, 2015, 226 (02) : 95 - 122
  • [4] Morrey Spaces for Nonhomogeneous Metric Measure Spaces
    Cao Yonghui
    Zhou Jiang
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [5] Interpolation of Morrey Spaces on Metric Measure Spaces
    Lu, Yufeng
    Yang, Dachun
    Yuan, Wen
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03): : 598 - 608
  • [6] On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals
    Dosso, Mouhamadou
    Fofana, Ibrahim
    Sanogo, Moumine
    [J]. ANNALES POLONICI MATHEMATICI, 2013, 108 (02) : 133 - 153
  • [7] SOBOLEV'S INEQUALITY FOR MUSIELAK-ORLICZ-MORREY SPACES OVER METRIC MEASURE SPACES
    OHNO, T. A. K. A. O.
    SHIMOMURA, T. E. T. S. U.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) : 371 - 385
  • [8] Grand Sobolev Spaces on Metric Measure Spaces
    Pavlov, S., V
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (05) : 956 - 966
  • [9] Weighted Sobolev spaces on metric measure spaces
    Ambrosio, Luigi
    Pinamonti, Andrea
    Speight, Gareth
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 746 : 39 - 65
  • [10] Grand Sobolev Spaces on Metric Measure Spaces
    S. V. Pavlov
    [J]. Siberian Mathematical Journal, 2022, 63 : 956 - 966