Uhlenbeck’s Decomposition in Sobolev and Morrey–Sobolev Spaces

被引:0
|
作者
Paweł Goldstein
Anna Zatorska-Goldstein
机构
[1] University of Warsaw,Faculty of Mathematics, Informatics and Mechanics
来源
Results in Mathematics | 2018年 / 73卷
关键词
Primary 35A25; Secondary 35J60; 70S15;
D O I
暂无
中图分类号
学科分类号
摘要
We present a self-contained proof of Rivière’s theorem on the existence of Uhlenbeck’s decomposition for Ω∈Lp(Bn,so(m)⊗Λ1Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in L^p(\mathbb {B}^n,so(m)\otimes \Lambda ^1\mathbb {R}^n)$$\end{document} for p∈(1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,n)$$\end{document}, with Sobolev type estimates in the case p∈[n/2,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in [n/2,n)$$\end{document} and Morrey–Sobolev type estimates in the case p∈(1,n/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,n/2)$$\end{document}. We also prove an analogous theorem in the case when Ω∈Lp(Bn,TCO+(m)⊗Λ1Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in L^p( \mathbb {B}^n, TCO_{+}(m) \otimes \Lambda ^1\mathbb {R}^n)$$\end{document}, which corresponds to Uhlenbeck’s decomposition with conformal gauge group.
引用
收藏
相关论文
共 50 条
  • [21] On Sobolev and Franke-Jawerth embeddings of smoothness Morrey spaces
    Haroske, Dorothee D.
    Skrzypczak, Leszek
    REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (02): : 541 - 573
  • [22] Decomposition of S1-valued maps in Sobolev spaces
    Mironescu, Petru
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) : 743 - 746
  • [23] Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 671 - 695
  • [24] On Sobolev-type Inequalities on Morrey Spaces of an Integral Form
    Ohno, Takao
    Shimomura, Tetsu
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (04): : 831 - 845
  • [25] A WEAK POINCARE-SOBOLEV INEQUALITY FOR FUNCTIONS IN MORREY SPACES
    Essoh, Modeste
    Fofana, Ibrahim
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (02): : 215 - 227
  • [26] HARDY-SOBOLEV INEQUALITIES FOR SOBOLEV FUNCTIONS IN CENTRAL HERZ-MORREY SPACES ON THE UNIT BALL
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    ANNALES FENNICI MATHEMATICI, 2021, 46 (02): : 1031 - 1052
  • [27] Sobolev spaces and Sobolev sheaves
    Lebeau, Gilles
    ASTERISQUE, 2016, (383) : 61 - 94
  • [28] Dirac-Sobolev Spaces and Sobolev Spaces
    Ichinose, Takashi
    Saito, Yoshimi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (02): : 291 - 310
  • [29] On Burenkov's extension operator preserving Sobolev-Morrey spaces on Lipschitz domains
    Fanciullo, Maria Stella
    Lamberti, Pier Domenico
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (01) : 37 - 49
  • [30] SOBOLEV'S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOUBLING MORREY SPACES
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    Sobukawa, Takuya
    OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (01) : 255 - 271