Sobolev Embedding Theorem for the Sobolev-Morrey spaces

被引:0
|
作者
Burenkov, V. I. [1 ]
Kydyrmina, N. A. [2 ]
机构
[1] Cardiff Univ, Cardiff, S Glam, Wales
[2] Inst Appl Math, Karaganda, Kazakhstan
来源
关键词
Morrey space; Sobolev-Morrey space; Sobolev Embedding Theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev, Mustafaev and on estimates on the Riesz potentials. We mention that a Sobolev Embedding Theorem for Sobolev morrey spaces had been proved by Campanato, for a subspace of our Sobolev-Morrey space which corresponds to the closure of the set of smooth functions in our Sobolev-Morrey space. The methods of the present paper are considerably different from those of Campanato.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 50 条
  • [1] Sobolev-Morrey spaces related to an ultraparabolic equation
    Polidoro, S
    Ragusa, MA
    MANUSCRIPTA MATHEMATICA, 1998, 96 (03) : 371 - 392
  • [2] A criterion for embedding of anisotropic Sobolev-Morrey spaces into the space of uniformly continuous functions
    Temirgaliev, N.
    Zhainibekova, M. A.
    Dzhumakaeva, G. T.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (05) : 905 - 917
  • [3] ON SOME DIFFERENTIAL PROPERTIES OF SMALL SMALL SOBOLEV-MORREY SPACES
    Najafov, A. M.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 57 - 67
  • [4] Some differential properties of anisotropic grand Sobolev-Morrey spaces
    Najafov, Alik M.
    Rustamova, Nilufer R.
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2018, 172 (01) : 82 - 89
  • [5] Embedding theorems in the Sobolev-Morrey type spaces Sp,a,ℵτWW(G) with dominant mixed derivatives
    A. M. Nadzhafov
    Siberian Mathematical Journal, 2006, 47 : 505 - 516
  • [6] On Stein's extension operator preserving Sobolev-Morrey spaces
    Lamberti, Pier Domenico
    Violo, Ivan Yuri
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (08) : 1701 - 1715
  • [7] Embedding theorems in the Sobolev-Morrey type spaces Slp,a,χ,τW(G) with dominant mixed derivatives
    Nadzhafov, A. M.
    SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (03) : 505 - 516
  • [8] AN EMBEDDING THEOREM OF RELLICH IN SOBOLEV SPACES
    GRAMSCH, B
    MATHEMATISCHE ZEITSCHRIFT, 1968, 106 (02) : 81 - &
  • [9] ON SOME DIFFERENTIAL PROPERTIES OF FUNCTIONS IN GENERALIZED GRAND SOBOLEV-MORREY SPACES
    Najafov, Alik M.
    Eroglu, Ahmet
    Mustafayeva, Firide
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2023, 72 (02): : 429 - 437
  • [10] SOME PROPERTIES OF GRAND SOBOLEV-MORREY SPACES WITH DOMINANT MIXED DERIVATIVES
    Najafov, Alik M.
    Alekberli, Sain T.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 1171 - 1180