A systematic study on weak Galerkin finite-element method for second-order wave equation

被引:0
|
作者
Puspendu Jana
Naresh Kumar
Bhupen Deka
机构
[1] Indian Institute of Technology,Department of Mathematics
来源
关键词
Wave equation; Finite-element method; Weak Galerkin method; Semidiscrete and fully discrete schemes; Optimal error estimates; 65M15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present a systematic numerical study for second-order linear wave equation using weak Galerkin finite-element methods (WG-FEMs). Various degrees of polynomials are used to construct weak Galerkin finite-element spaces. Error estimates in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm as well as in discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm have been established for general weak Galerkin space (Pk(K),Pj(∂K),[Pl(K)]2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textbf {P}}}_k ({\mathcal {K}}), {{\textbf {P}}}_j (\partial {\mathcal {K}}), [{{\textbf {P}}}_l ({\mathcal {K}})]^2),$$\end{document} where k,j&l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k, j \& l$$\end{document} are non-negative integers with k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 1$$\end{document}. Time discretization for fully discrete scheme is based on second order in time Newmark scheme. Finally, we provide several numerical results to confirm theoretical findings.
引用
收藏
相关论文
共 50 条
  • [31] A second-order hybrid finite-element/volume method for viscoelastic flows
    Wapperom, P
    Webster, MF
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1998, 79 (2-3) : 405 - 431
  • [32] L2 estimates for weak Galerkin finite element methods for second-order wave equations with polygonal meshes
    Kumar, Naresh
    Dutta, Jogen
    Deka, Bhupen
    APPLIED NUMERICAL MATHEMATICS, 2023, 192 : 84 - 103
  • [33] Developing weak Galerkin finite element methods for the wave equation
    Huang, Yunqing
    Li, Jichun
    Li, Dan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 868 - 884
  • [34] A new P0 weak Galerkin finite element scheme for second-order problems
    Charati, AllahBakhsh Yazdani
    Momeni, Hamid
    Cheichan, Mohammed S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):
  • [35] Second-order radiative transfer equation and its properties of numerical solution using the finite-element method
    Zhao, J. M.
    Liu, L. H.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2007, 51 (04) : 391 - 409
  • [37] A weak Galerkin mixed finite element method for the Helmholtz equation with large wave numbers
    Wang, Ruishu
    Wang, Xiaoshen
    Zhai, Qilong
    Zhang, Kai
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (03) : 1009 - 1032
  • [38] Variational data assimilation with finite-element discretization for second-order parabolic interface equation
    Li, Xuejian
    He, Xiaoming
    Gong, Wei
    Douglas, Craig C.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 451 - 493
  • [39] Discontinuous Galerkin finite element method for the wave equation
    Grote, Marcus J.
    Schneebeli, Anna
    Schoetzau, Dominik
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (06) : 2408 - 2431
  • [40] Second-order finite-element projection method for 3D flows
    Guermond, JL
    Quartapelle, L
    SIXTEENTH INTERNATIONAL CONFERENCE ON NUMERICAL METHODS IN FLUID DYNAMICS, 1998, 515 : 391 - 396