A systematic study on weak Galerkin finite-element method for second-order wave equation

被引:0
|
作者
Puspendu Jana
Naresh Kumar
Bhupen Deka
机构
[1] Indian Institute of Technology,Department of Mathematics
来源
关键词
Wave equation; Finite-element method; Weak Galerkin method; Semidiscrete and fully discrete schemes; Optimal error estimates; 65M15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present a systematic numerical study for second-order linear wave equation using weak Galerkin finite-element methods (WG-FEMs). Various degrees of polynomials are used to construct weak Galerkin finite-element spaces. Error estimates in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm as well as in discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm have been established for general weak Galerkin space (Pk(K),Pj(∂K),[Pl(K)]2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textbf {P}}}_k ({\mathcal {K}}), {{\textbf {P}}}_j (\partial {\mathcal {K}}), [{{\textbf {P}}}_l ({\mathcal {K}})]^2),$$\end{document} where k,j&l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k, j \& l$$\end{document} are non-negative integers with k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 1$$\end{document}. Time discretization for fully discrete scheme is based on second order in time Newmark scheme. Finally, we provide several numerical results to confirm theoretical findings.
引用
收藏
相关论文
共 50 条
  • [21] A new weak Galerkin finite element scheme for general second-order elliptic problems
    Li, Guanrong
    Chen, Yanping
    Huang, Yunqing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 : 701 - 715
  • [22] Weak-Galerkin finite element methods for a second-order elliptic variational inequality
    Guan, Qingguang
    Gunzburger, Max
    Zhao, Wenju
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 677 - 688
  • [23] A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems
    Zhai, Qilong
    Ye, Xiu
    Wang, Ruishu
    Zhang, Ran
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2243 - 2252
  • [24] A HYBRIDIZED WEAK GALERKIN FINITE ELEMENT SCHEME FOR GENERAL SECOND-ORDER ELLIPTIC PROBLEMS
    Li, Guanrong
    Chen, Yanping
    Huang, Yunqing
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 821 - 836
  • [25] A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS
    Wang, Junping
    Ye, Xiu
    MATHEMATICS OF COMPUTATION, 2014, 83 (289) : 2101 - 2126
  • [26] Analysis of second-order resonance in wave interactions with floating bodies through a finite-element method
    Wang, C. Z.
    Wu, G. X.
    OCEAN ENGINEERING, 2008, 35 (8-9) : 717 - 726
  • [27] A computational study of the weak Galerkin method for second-order elliptic equations
    Lin Mu
    Junping Wang
    Yanqiu Wang
    Xiu Ye
    Numerical Algorithms, 2013, 63 : 753 - 777
  • [28] A computational study of the weak Galerkin method for second-order elliptic equations
    Mu, Lin
    Wang, Junping
    Wang, Yanqiu
    Ye, Xiu
    NUMERICAL ALGORITHMS, 2013, 63 (04) : 753 - 777
  • [29] A weak Galerkin finite element method for Burgers' equation
    Chen, Yanli
    Zhang, Tie
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 103 - 119
  • [30] DISCONTINUOUS GALERKIN GALERKIN DIFFERENCES FOR THE WAVE EQUATION IN SECOND-ORDER FORM
    Banks, J. W.
    Buckner, B. Brett
    Hagstrom, T.
    Juhnke, K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A1497 - A1526