A systematic study on weak Galerkin finite-element method for second-order wave equation

被引:0
|
作者
Puspendu Jana
Naresh Kumar
Bhupen Deka
机构
[1] Indian Institute of Technology,Department of Mathematics
来源
关键词
Wave equation; Finite-element method; Weak Galerkin method; Semidiscrete and fully discrete schemes; Optimal error estimates; 65M15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present a systematic numerical study for second-order linear wave equation using weak Galerkin finite-element methods (WG-FEMs). Various degrees of polynomials are used to construct weak Galerkin finite-element spaces. Error estimates in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm as well as in discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm have been established for general weak Galerkin space (Pk(K),Pj(∂K),[Pl(K)]2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textbf {P}}}_k ({\mathcal {K}}), {{\textbf {P}}}_j (\partial {\mathcal {K}}), [{{\textbf {P}}}_l ({\mathcal {K}})]^2),$$\end{document} where k,j&l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k, j \& l$$\end{document} are non-negative integers with k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 1$$\end{document}. Time discretization for fully discrete scheme is based on second order in time Newmark scheme. Finally, we provide several numerical results to confirm theoretical findings.
引用
收藏
相关论文
共 50 条
  • [11] Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation
    M. Ainsworth
    P. Monk
    W. Muniz
    Journal of Scientific Computing, 2006, 27 : 5 - 40
  • [12] A Systematic Study on Weak Galerkin Finite Element Methods for Second Order Elliptic Problems
    Junping Wang
    Ruishu Wang
    Qilong Zhai
    Ran Zhang
    Journal of Scientific Computing, 2018, 74 : 1369 - 1396
  • [13] A Systematic Study on Weak Galerkin Finite Element Methods for Second Order Elliptic Problems
    Wang, Junping
    Wang, Ruishu
    Zhai, Qilong
    Zhang, Ran
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (03) : 1369 - 1396
  • [14] A STABILIZER FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR GENERAL SECOND-ORDER ELLIPTIC PROBLEM
    Al-Taweel, Ahmed
    Hussain, Saqib
    Lin, Runchang
    Zhu, Peng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (03) : 311 - 323
  • [15] A local discontinuous Galerkin method for the second-order wave equation
    Baccouch, Mahboub
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 : 129 - 143
  • [16] The Cascadic Multigrid Method of the Weak Galerkin Method for Second-Order Elliptic Equation
    Sun, Shi
    Huang, Ziping
    Wang, Cheng
    Guo, Liming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [17] WEAK GALERKIN FINITE ELEMENT METHOD FOR SECOND ORDER PARABOLIC EQUATIONS
    Zhang, Hongqin
    Zou, Yongkui
    Xu, Yingxiang
    Zhai, Qilong
    Yue, Hua
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (04) : 525 - 544
  • [18] Finite-Element Time-Domain Method for Multiconductor Transmission Lines Based on the Second-Order Wave Equation
    Qi, Lei
    Bai, Shuhua
    Shuai, Qi
    Liu, Xin
    Cui, Xiang
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2014, 56 (05) : 1218 - 1228
  • [19] Stabilizer-free weak Galerkin finite element method with second-order accuracy in time for the time fractional diffusion equation
    Ma, Jie
    Gao, Fuzheng
    Du, Ning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 414
  • [20] A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS WITH ROBIN BOUNDARY CONDITIONS
    Zhang, Qian
    Zhang, Ran
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2016, 34 (05) : 532 - 548