A systematic study on weak Galerkin finite-element method for second-order wave equation

被引:0
|
作者
Puspendu Jana
Naresh Kumar
Bhupen Deka
机构
[1] Indian Institute of Technology,Department of Mathematics
来源
关键词
Wave equation; Finite-element method; Weak Galerkin method; Semidiscrete and fully discrete schemes; Optimal error estimates; 65M15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present a systematic numerical study for second-order linear wave equation using weak Galerkin finite-element methods (WG-FEMs). Various degrees of polynomials are used to construct weak Galerkin finite-element spaces. Error estimates in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm as well as in discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm have been established for general weak Galerkin space (Pk(K),Pj(∂K),[Pl(K)]2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({{\textbf {P}}}_k ({\mathcal {K}}), {{\textbf {P}}}_j (\partial {\mathcal {K}}), [{{\textbf {P}}}_l ({\mathcal {K}})]^2),$$\end{document} where k,j&l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k, j \& l$$\end{document} are non-negative integers with k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 1$$\end{document}. Time discretization for fully discrete scheme is based on second order in time Newmark scheme. Finally, we provide several numerical results to confirm theoretical findings.
引用
收藏
相关论文
共 50 条
  • [1] A systematic study on weak Galerkin finite-element method for second-order wave equation
    Jana, Puspendu
    Kumar, Naresh
    Deka, Bhupen
    [J]. Computational and Applied Mathematics, 2022, 41 (08)
  • [2] A systematic study on weak Galerkin finite-element method for second-order wave equation
    Jana, Puspendu
    Kumar, Naresh
    Deka, Bhupen
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [3] Developing Stabilizer Free Weak Galerkin finite element method for second-order wave equation
    Kumar, Naresh
    Deka, Bhupen
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 415
  • [4] A systematic study on weak Galerkin finite element method for second-order parabolic problems
    Deka, Bhupen
    Kumar, Naresh
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 2444 - 2474
  • [5] A stabilizer free weak Galerkin finite element method for second-order Sobolev equation
    Kumar, Naresh
    Deka, Bhupen
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 2115 - 2140
  • [6] A weak Galerkin finite element method for second-order elliptic problems
    Wang, Junping
    Ye, Xiu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 241 : 103 - 115
  • [7] Convergence of Weak Galerkin Finite Element Method for Second Order Linear Wave Equation in Heterogeneous Media
    Deka, Bhupen
    Roy, Papri
    Kumar, Naresh
    Kumar, Raman
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2023, 16 (02) : 323 - 347
  • [8] Weak Galerkin finite element method with second-order accuracy in time for parabolic problems
    Zhou, Shiping
    Gao, Fuzheng
    Lib, Benxing
    Sun, Zhengjia
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 90 : 118 - 123
  • [9] Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation
    Ainsworth, M.
    Monk, P.
    Muniz, W.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) : 5 - 40
  • [10] A Systematic Study on Weak Galerkin Finite Element Methods for Second Order Elliptic Problems
    Junping Wang
    Ruishu Wang
    Qilong Zhai
    Ran Zhang
    [J]. Journal of Scientific Computing, 2018, 74 : 1369 - 1396