In this article, we present a systematic numerical study for second-order linear wave equation using weak Galerkin finite-element methods (WG-FEMs). Various degrees of polynomials are used to construct weak Galerkin finite-element spaces. Error estimates in L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^2$$\end{document} norm as well as in discrete H1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^1$$\end{document} norm have been established for general weak Galerkin space (Pk(K),Pj(∂K),[Pl(K)]2),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({{\textbf {P}}}_k ({\mathcal {K}}), {{\textbf {P}}}_j (\partial {\mathcal {K}}), [{{\textbf {P}}}_l ({\mathcal {K}})]^2),$$\end{document} where k,j&l\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ k, j \& l$$\end{document} are non-negative integers with k≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \ge 1$$\end{document}. Time discretization for fully discrete scheme is based on second order in time Newmark scheme. Finally, we provide several numerical results to confirm theoretical findings.