Bound State Solutions of the Klein-Gordon Equation for the Mathews-Lakshmanan Oscillator

被引:0
|
作者
Axel Schulze-Halberg
Jie Wang
机构
[1] Indiana University Northwest,Department of Mathematics and Actuarial Science and Department of Physics
[2] Indiana University Northwest,Department of Computer Information Systems
来源
Few-Body Systems | 2014年 / 55卷
关键词
Gordon Equation; Continue Fraction Expansion; Nonrelativistic Quantum; Bound State Energy; Bound State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We study a boundary-value problem for the Klein-Gordon equation that is inspired by the well-known Mathews-Lakshmanan oscillator model. By establishing a link to the spheroidal equation, we show that our problem admits an infinite number of discrete energies, together with associated solutions that form an orthogonal set in a weighted L2-Hilbert space.
引用
收藏
页码:1223 / 1232
页数:9
相关论文
共 50 条
  • [1] Bound State Solutions of the Klein-Gordon Equation for the Mathews-Lakshmanan Oscillator
    Schulze-Halberg, Axel
    Wang, Jie
    [J]. FEW-BODY SYSTEMS, 2014, 55 (12) : 1223 - 1232
  • [2] Bound state solutions of Klein-Gordon equation with the Kratzer potential
    Kocak, M.
    [J]. CHINESE PHYSICS LETTERS, 2007, 24 (02) : 315 - 317
  • [3] BOUND-STATE SOLUTIONS OF THE KLEIN-GORDON EQUATION FOR STRONG POTENTIALS
    FLEISCHER, W
    SOFF, G
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1984, 39 (08): : 703 - 719
  • [4] Bound states of the isotonic Mathews-Lakshmanan oscillator system within the Dunkl formalism
    Schulze-Halberg, Axel
    [J]. MODERN PHYSICS LETTERS A, 2022, 37 (27)
  • [5] Closed-form solutions and supersymmetric partners of the inverted Mathews-Lakshmanan oscillator
    Schulze-Halberg, Axel
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (07):
  • [6] Closed-form solutions and supersymmetric partners of the inverted Mathews-Lakshmanan oscillator
    Axel Schulze-Halberg
    [J]. The European Physical Journal Plus, 130
  • [7] Bound state solutions of the Klein-Gordon equation with energy-dependent potentials
    Lutfuoglu, B. C.
    Ikot, A. N.
    Karakoc, M.
    Osobonye, G. T.
    Ngiangia, A. T.
    Bayrak, O.
    [J]. MODERN PHYSICS LETTERS A, 2021, 36 (04)
  • [8] Bound state solutions of the Klein-Gordon equation with the generalized Poschl-Teller potential
    Chen, Tao
    Diao, Yong-Feng
    Jia, Chun-Sheng
    [J]. PHYSICA SCRIPTA, 2009, 79 (06)
  • [9] Bound state solutions of Klein-Gordon equation with Mobius square plus Yukawa potentials
    Antia, A. D.
    Ikot, A. N.
    Hassanabadi, H.
    Maghsoodi, E.
    [J]. INDIAN JOURNAL OF PHYSICS, 2013, 87 (11) : 1133 - 1139
  • [10] Exact solutions of the Klein-Gordon equation with a new anharmonic oscillator potential
    Zhang, MC
    Wang, ZB
    [J]. CHINESE PHYSICS LETTERS, 2005, 22 (12) : 2994 - 2996