Bound State Solutions of the Klein-Gordon Equation for the Mathews-Lakshmanan Oscillator

被引:0
|
作者
Axel Schulze-Halberg
Jie Wang
机构
[1] Indiana University Northwest,Department of Mathematics and Actuarial Science and Department of Physics
[2] Indiana University Northwest,Department of Computer Information Systems
来源
Few-Body Systems | 2014年 / 55卷
关键词
Gordon Equation; Continue Fraction Expansion; Nonrelativistic Quantum; Bound State Energy; Bound State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We study a boundary-value problem for the Klein-Gordon equation that is inspired by the well-known Mathews-Lakshmanan oscillator model. By establishing a link to the spheroidal equation, we show that our problem admits an infinite number of discrete energies, together with associated solutions that form an orthogonal set in a weighted L2-Hilbert space.
引用
收藏
页码:1223 / 1232
页数:9
相关论文
共 50 条
  • [41] Bound state solutions of the Klein-Gordon equation with the improved expression of the Manning-Rosen potential energy model
    Jia, Chun-Sheng
    Chen, Tao
    He, Su
    [J]. PHYSICS LETTERS A, 2013, 377 (09) : 682 - 686
  • [42] Calculation of the Oscillator Strength for the Klein-Gordon Equation with Tietz Potential
    Lu, L. L.
    Yazarloo, B. H.
    Zarrinkamar, S.
    Liu, G.
    Hassanabadi, H.
    [J]. FEW-BODY SYSTEMS, 2012, 53 (3-4) : 573 - 581
  • [43] Bound state solutions of the s-wave Klein-Gordon equation with position dependent mass for exponential potential
    Dai, Tong-Qing
    [J]. JOURNAL OF ATOMIC AND MOLECULAR SCIENCES, 2011, 2 (04): : 360 - 367
  • [44] Bound-State Solutions of the Klein-Gordon Equation for the Generalized PT-Symmetric Hulthén Potential
    Harun Egrifes
    Ramazan Sever
    [J]. International Journal of Theoretical Physics, 2007, 46 : 935 - 950
  • [45] A family of the spiral solutions of the nonlinear Klein-Gordon equation
    Gudkov, V.V.
    [J]. Mathematical Modelling and Analysis, 1998, 3 (01): : 98 - 103
  • [46] Bound State Solutions of Three-Dimensional Klein-Gordon Equation for Two Model Potentials by NU Method
    Tazimi, N.
    Ghasempour, A.
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2020, 2020
  • [47] Exact solutions of coupled nonlinear Klein-Gordon equation
    Shang, Desheng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1577 - 1583
  • [48] Exact Solutions of the Klein-Gordon Equation with Hylleraas Potential
    Ikot, Akpan N.
    Awoga, Oladunjoye A.
    Ita, Benedict I.
    [J]. FEW-BODY SYSTEMS, 2012, 53 (3-4) : 539 - 548
  • [49] Analytical solutions of the Klein-Gordon equation with a combined potential
    Onate, C. A.
    Onyeaju, M. C.
    Ikot, A. N.
    Ojonubah, J. O.
    [J]. CHINESE JOURNAL OF PHYSICS, 2016, 54 (05) : 820 - 829
  • [50] Square integrable solutions to the Klein-Gordon equation on a manifold
    I. V. Volovich
    V. V. Kozlov
    [J]. Doklady Mathematics, 2006, 73 : 441 - 444