Bound State Solutions of the Klein-Gordon Equation for the Mathews-Lakshmanan Oscillator

被引:0
|
作者
Axel Schulze-Halberg
Jie Wang
机构
[1] Indiana University Northwest,Department of Mathematics and Actuarial Science and Department of Physics
[2] Indiana University Northwest,Department of Computer Information Systems
来源
Few-Body Systems | 2014年 / 55卷
关键词
Gordon Equation; Continue Fraction Expansion; Nonrelativistic Quantum; Bound State Energy; Bound State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We study a boundary-value problem for the Klein-Gordon equation that is inspired by the well-known Mathews-Lakshmanan oscillator model. By establishing a link to the spheroidal equation, we show that our problem admits an infinite number of discrete energies, together with associated solutions that form an orthogonal set in a weighted L2-Hilbert space.
引用
收藏
页码:1223 / 1232
页数:9
相关论文
共 50 条
  • [31] Exact bound state solutions of the s-wave Klein-Gordon equation with the generalized Hulthen potential
    Chen, G
    Chen, ZD
    Lou, ZM
    [J]. PHYSICS LETTERS A, 2004, 331 (06) : 374 - 377
  • [32] Bound-state solutions of the Klein-Gordon equation for the generalized PT-symmetric Hulthen potential
    Egrifes, Harun
    Sever, Ramazan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (04) : 935 - 950
  • [33] Exact solutions of the 2D Dunkl-Klein-Gordon equation: The Coulomb potential and the Klein-Gordon oscillator
    Mota, R. D.
    Ojeda-Guillen, D.
    Salazar-Ramirez, M.
    Granados, V. D.
    [J]. MODERN PHYSICS LETTERS A, 2021, 36 (23)
  • [34] Bound and Scattering State Solutions of the Klein-Gordon Equation with Deng-Fan Potential in Higher Dimensions
    Ikot, A. N.
    Okorie, U. S.
    Rampho, G. J.
    Edet, C. O.
    Horchani, R.
    Abdel-aty, A.
    Alshehri, N. A.
    Elagan, S. K.
    [J]. FEW-BODY SYSTEMS, 2021, 62 (04)
  • [35] Vibrational Resonance in a Damped Bi-harmonic Driven Mathews-Lakshmanan Oscillator
    Kabilan, R.
    Venkatesan, A.
    [J]. JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (01) : 1123 - 1131
  • [36] On the Supersymmetry of the Klein-Gordon Oscillator
    Junker, Georg
    [J]. SYMMETRY-BASEL, 2021, 13 (05):
  • [37] THE KLEIN-GORDON OSCILLATOR - COMMENT
    DVOEGLAZOV, VV
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1994, 107 (08): : 1413 - 1417
  • [39] Exact bound state solutions of the Klein-Gordon particle in Hulthn potential
    张民仓
    [J]. Chinese Physics B, 2008, 17 (09) : 3214 - 3216
  • [40] Two-parameter double-oscillator model of Mathews-Lakshmanan type: Series solutions and supersymmetric partners
    Schulze-Halberg, Axel
    Wang, Jie
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)