Bound state solutions of Klein-Gordon equation with Mobius square plus Yukawa potentials

被引:33
|
作者
Antia, A. D. [1 ]
Ikot, A. N. [1 ]
Hassanabadi, H. [2 ]
Maghsoodi, E. [2 ]
机构
[1] Univ Uyo, Dept Phys, Theoret Phys Grp, Uyo, Nigeria
[2] Islamic Azad Univ, Shahrood Branch, Dept Basic Sci, Shahrood, Iran
关键词
Klein-Gordon equation; Mobius potential; Yukawa potential; Bound state and NU method; EXACT QUANTIZATION RULE; MORSE-TYPE POTENTIALS; L-WAVE SOLUTIONS; SCHRODINGER-EQUATION; ANALYTICAL APPROXIMATIONS; SPINLESS PARTICLES; CENTRIFUGAL TERM; SCALAR; VECTOR; OSCILLATOR;
D O I
10.1007/s12648-013-0336-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have solved approximately Klein-Gordon equation with equal scalar and vector Mobius square plus Yukawa potentials in D-dimensions using the parametric form of Nikiforov-Uvarov method. Energy eigenvalues and corresponding wave functions in terms of Jacobi polynomials are obtained. We have also discussed some special cases of our potential.
引用
收藏
页码:1133 / 1139
页数:7
相关论文
共 50 条
  • [1] Bound state solutions of Klein–Gordon equation with Mobius square plus Yukawa potentials
    A. D. Antia
    A. N. Ikot
    H. Hassanabadi
    E. Maghsoodi
    [J]. Indian Journal of Physics, 2013, 87 : 1133 - 1139
  • [2] Approximate bound state solutions of the Klein-Gordon equation with the linear combination of Hulthen and Yukawa potentials
    Ahmadov, A., I
    Aslanova, S. M.
    Orujova, M. Sh
    Badalov, S., V
    Doug, Shi-Hai
    [J]. PHYSICS LETTERS A, 2019, 383 (24) : 3010 - 3017
  • [3] Relativistic and non-relativistic thermal properties with bound and scattering states of the Klein-Gordon equation for Mobius square plus generalized Yukawa potentials
    Ikot, A. N.
    Okorie, U. S.
    Okon, I. B.
    Ahmadov, A. I.
    Edet, C. O.
    Oladimeji, Enock
    Duque, C. A.
    Rampho, G. J.
    [J]. INDIAN JOURNAL OF PHYSICS, 2023, 97 (10) : 2871 - 2888
  • [4] Relativistic and non-relativistic thermal properties with bound and scattering states of the Klein-Gordon equation for Mobius square plus generalized Yukawa potentials
    A. N. Ikot
    U. S. Okorie
    I. B. Okon
    A. I. Ahmadov
    C. O. Edet
    Enock Oladimeji
    C. A. Duque
    G. J. Rampho
    [J]. Indian Journal of Physics, 2023, 97 : 2871 - 2888
  • [5] BOUND-STATE SOLUTIONS OF THE KLEIN-GORDON EQUATION FOR STRONG POTENTIALS
    FLEISCHER, W
    SOFF, G
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1984, 39 (08): : 703 - 719
  • [6] Bound state solutions of the Klein-Gordon equation with energy-dependent potentials
    Lutfuoglu, B. C.
    Ikot, A. N.
    Karakoc, M.
    Osobonye, G. T.
    Ngiangia, A. T.
    Bayrak, O.
    [J]. MODERN PHYSICS LETTERS A, 2021, 36 (04)
  • [7] Arbitrary l-state solutions of the Klein-Gordon equation with the Manning-Rosen plus a Class of Yukawa potentials
    Ahmadov, A., I
    Demirci, M.
    Aslanova, S. M.
    Mustamin, M. F.
    [J]. PHYSICS LETTERS A, 2020, 384 (12)
  • [8] Bound states and the oscillator strengths for the Klein-Gordon equation under MObius square potential
    Hassanabadi, Hassan
    Yazarloo, Bentol Hoda
    Zarrinkamar, Saber
    [J]. TURKISH JOURNAL OF PHYSICS, 2013, 37 (02): : 268 - 274
  • [9] Bound and scattering states solutions of the Klein-Gordon equation with generalized Mobius square potential in D-dimensions
    Okorie, Uduakobong S.
    Ikot, Akpan N.
    Edet, Collins O.
    Rampho, Gaotsiwe J.
    Horchani, Ridha
    Jelassi, Haikel
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2021, 75 (02):
  • [10] Bound state solutions of Klein-Gordon equation with the Kratzer potential
    Kocak, M.
    [J]. CHINESE PHYSICS LETTERS, 2007, 24 (02) : 315 - 317