Periodic Orbits and Semiclassical Form Factor in Barrier Billiards

被引:0
|
作者
O. Giraud
机构
[1] Université Paul Sabatier,Laboratoire de Physique théorique, UMR 5152 du CNRS
来源
关键词
Neural Network; Statistical Physic; Complex System; Periodic Orbit; Nonlinear Dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
Using heuristic arguments based on the trace formulas, we analytically calculate the semiclassical two-point correlation form factor for a family of rectangular billiards with a barrier of height irrational with respect to the side of the billiard and located at any rational position p/q from the side. To do this, we first obtain the asymptotic density of lengths for each family of periodic orbits by a Siegel-Veech formula. The result [inline-graphic not available: see fulltext] obtained for these pseudo-integrable, non-Veech billiards is different but not far from the value of 1/2 expected for semi-Poisson statistics and from values of [inline-graphic not available: see fulltext] obtained previously in the case of Veech billiards.
引用
收藏
页码:183 / 201
页数:18
相关论文
共 50 条
  • [41] SEMICLASSICAL SPECTRA WITHOUT PERIODIC-ORBITS FOR A KICKED TOP
    GERWINSKI, P
    HAAKE, F
    WIEDEMANN, H
    KUS, M
    ZYCZKOWSKI, K
    PHYSICAL REVIEW LETTERS, 1995, 74 (09) : 1562 - 1565
  • [42] RESONANT PERIODIC-ORBITS AND THE SEMICLASSICAL ENERGY-SPECTRUM
    DEALMEIDA, AMO
    HANNAY, JH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (17): : 5873 - 5883
  • [43] Semiclassical inequivalence of polygonalized billiards
    Biswas, D
    PHYSICAL REVIEW E, 2000, 61 (05): : 5073 - 5079
  • [44] Semiclassical quantization of neutrino billiards
    Dietz, Barbara
    Li, Zi-Yuan
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [45] Wave functions with localizations on classical periodic orbits in weakly perturbed quantum billiards
    Liu, C. C.
    Lu, T. H.
    Chen, Y. F.
    Huang, K. F.
    PHYSICAL REVIEW E, 2006, 74 (04)
  • [46] From classical periodic orbits in integrable -rational billiards to quantum energy spectrum
    Panda, Subhasis
    Maulik, Sabyasachi
    Chakraborty, Somdeb
    Khastgir, S. Pratik
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [47] Semiclassical inequivalence of polygonalized billiards
    Biswas, Debabrata, 2000, American Physical Society (61):
  • [48] A proof of Culter's theorem on the existence of periodic orbits in polygonal outer billiards
    Tabachnikov, Serge
    GEOMETRIAE DEDICATA, 2007, 129 (01) : 83 - 87
  • [49] Computer-Assisted Methods for Analyzing Periodic Orbits in Vibrating Gravitational Billiards
    Church, Kevin E. M.
    Fortin, Clement
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (08):
  • [50] A proof of Culter’s theorem on the existence of periodic orbits in polygonal outer billiards
    Serge Tabachnikov
    Geometriae Dedicata, 2007, 129 : 83 - 87