Computer-Assisted Methods for Analyzing Periodic Orbits in Vibrating Gravitational Billiards

被引:0
|
作者
Church, Kevin E. M. [1 ]
Fortin, Clement [2 ]
机构
[1] McGill Univ, Dept Math & Stat, 805 Sherbrooke St W, Montreal, PQ H3A 0B9, Canada
[2] McGill Univ, Dept Phys, 805 Sherbrooke St W, Montreal, PQ H3A 0B9, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Gravitational billiards; time-varying domain; periodic orbit; rigorous numerics; numerical continuation; BOUNCING BALL;
D O I
10.1142/S0218127421300214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using rigorous numerical methods, we prove the existence of 608 isolated periodic orbits in a gravitational billiard in a vibrating unbounded parabolic domain. We then perform pseudo-arclength continuation in the amplitude of the parabolic surface's oscillation to compute large, global branches of periodic orbits. These branches are themselves proven rigorously using computer-assisted methods. Our numerical investigations strongly suggest the existence of multiple pitchfork bifurcations in the billiard model. Based on the numerics, physical intuition and existing results for a simplified model, we conjecture that for any pair (k,p), there is a constant xi for which periodic orbits consisting of k impacts per period p cannot be sustained for amplitudes of oscillation below xi. We compute a verified upper bound for the conjectured critical amplitude for (k,p) = (2, 2) using our rigorous pseudo-arclength continuation.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Computer-assisted proof of skeletons of periodic orbits
    Barrio, Roberto
    Rodriguez, Marcos
    Blesa, Fernando
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (01) : 80 - 85
  • [2] COMPUTER-ASSISTED VALIDATION OF THE EXISTENCE OF PERIODIC ORBITS IN THE BRUSSELATOR SYSTEM
    Banaskiewicz, Jakub
    Kalita, Piotr
    Zgliczynski, Piotr
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2024, 29 (11-12) : 815 - 862
  • [3] Persistence of Periodic Orbits under State-dependent Delayed Perturbations: Computer-assisted Proofs
    Gimeno, Joan
    Lessard, Jean-Philippe
    James, J. D. Mireles
    Yang, Jiaqi
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03): : 1743 - 1779
  • [4] COMPUTER-ASSISTED DEVELOPMENT OF METHODS
    HARTMANN, K
    KAUSCHUS, W
    KOHLERT, W
    WEISS, W
    CHEMISCHE TECHNIK, 1980, 32 (10): : 543 - 543
  • [5] Systematic Computer-Assisted Proof of Branches of Stable Elliptic Periodic Orbits and Surrounding Invariant Tori
    Wilczak, Daniel
    Barrio, Roberto
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (03): : 1618 - 1649
  • [6] A computer-assisted proof of existence of a periodic solution
    Miyaji, Tomoyuki
    Okamoto, Hisashi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (10) : 139 - 144
  • [7] COMPUTER-ASSISTED METHODS DEVELOPMENT FOR HPLC
    TOMELLINI, SA
    WOODRUFF, HB
    HARTWICK, RA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1984, 188 (AUG): : 109 - ANYL
  • [8] Are computer-assisted teaching methods effective?
    DeBord, KA
    Aruguete, MS
    Muhlig, J
    TEACHING OF PSYCHOLOGY, 2004, 31 (01) : 65 - 68
  • [9] Computer-assisted development of isocratic methods
    Antler, M
    Oshchepkova, I
    McBrien, M
    LC GC NORTH AMERICA, 2005, : 40 - 40
  • [10] COMPUTER-ASSISTED PROOFS OF EXISTENCE OF QUASI-PERIODIC SYSTEMS VIA FOURIER METHODS
    Haro, Alex
    Vidal, Eric sandin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,