COMPUTER-ASSISTED PROOFS OF EXISTENCE OF QUASI-PERIODIC SYSTEMS VIA FOURIER METHODS

被引:0
|
作者
Haro, Alex [1 ,2 ]
Vidal, Eric sandin [3 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Spain
[2] Ctr Recerca Matemat, Edifici C,Campus Bellaterra, Bellaterra 08193, Spain
[3] Vrije Univ Amsterdam, Fac Sci, Dept Math, Boelelaan 1111, NL-1081 HV Amsterdam, Netherlands
关键词
Key words and phrases. Invariant tori; quasi-periodically forced system; normal hyperbolicity; Fourier methods; computer-assisted proof; INVARIANT TORI; PARAMETERIZATION METHOD; ASYMPTOTIC STABILITY; COMPUTATION; WHISKERS; MAPS; EXPLORATIONS; MECHANISMS;
D O I
10.3934/dcdsb.2024143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. The goal of this paper is to provide a methodology to prove the existence of (fiberwise hyperbolic) real-analytic invariant tori in real-analytic quasi-periodic skew-product dynamical systems that present nearly-invariant tori of the same characteristics. The methodology was based on the application of a Newton-Kantorovich theorem whose hypotheses were tested using Fourier analysis methods for a numerical approximation of the parameterization of an invariant torus.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Fourier methods for quasi-periodic oscillations
    Schilder, Frank
    Vogt, Werner
    Schreiber, Stephan
    Osinga, Hinke M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (05) : 629 - 671
  • [2] A computer-assisted proof of existence of a periodic solution
    Miyaji, Tomoyuki
    Okamoto, Hisashi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (10) : 139 - 144
  • [3] Computer-assisted Existence Proofs for One-dimensional Schrodinger-Poisson Systems
    Wunderlich, Jonathan
    Plum, Michael
    ACTA CYBERNETICA, 2020, 24 (03): : 373 - 391
  • [4] THE EXISTENCE OF QUASI-PERIODIC MOTIONS IN QUASI-LINEAR SYSTEMS
    BIBIKOV, YN
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1995, 59 (01): : 19 - 26
  • [5] COMPUTER-ASSISTED PROOFS IN ANALYSIS
    LANFORD, OE
    PHYSICA A, 1984, 124 (1-3): : 465 - 470
  • [6] Spatial periodic orbits in the equilateral circular restricted four-body problem: computer-assisted proofs of existence
    Burgos-Garcia, Jaime
    Lessard, Jean-Philippe
    James, J. D. Mireles
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (01):
  • [7] Spatial periodic orbits in the equilateral circular restricted four-body problem: computer-assisted proofs of existence
    Jaime Burgos-García
    Jean-Philippe Lessard
    J. D. Mireles James
    Celestial Mechanics and Dynamical Astronomy, 2019, 131
  • [8] CUSP BIFURCATIONS: NUMERICAL DETECTION VIA TWO-PARAMETER CONTINUATION AND COMPUTER-ASSISTED PROOFS OF EXISTENCE
    Lessard, Jean-philippe
    Pugliese, Alessandro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [9] EXISTENCE OF QUASI-PERIODIC SOLUTIONS FOR FIRST ORDER DIFFERENTIAL SYSTEMS
    AVRAMESC.C
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1969, 47 (06): : 468 - &
  • [10] QUASI-PERIODIC SOLUTIONS OF DISSIPATIVE SYSTEMS WITH QUASI-PERIODIC COEFFICIENTS
    CHEBAN, DN
    DIFFERENTIAL EQUATIONS, 1986, 22 (02) : 200 - 209