COMPUTER-ASSISTED PROOFS OF EXISTENCE OF QUASI-PERIODIC SYSTEMS VIA FOURIER METHODS

被引:0
|
作者
Haro, Alex [1 ,2 ]
Vidal, Eric sandin [3 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Spain
[2] Ctr Recerca Matemat, Edifici C,Campus Bellaterra, Bellaterra 08193, Spain
[3] Vrije Univ Amsterdam, Fac Sci, Dept Math, Boelelaan 1111, NL-1081 HV Amsterdam, Netherlands
关键词
Key words and phrases. Invariant tori; quasi-periodically forced system; normal hyperbolicity; Fourier methods; computer-assisted proof; INVARIANT TORI; PARAMETERIZATION METHOD; ASYMPTOTIC STABILITY; COMPUTATION; WHISKERS; MAPS; EXPLORATIONS; MECHANISMS;
D O I
10.3934/dcdsb.2024143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. The goal of this paper is to provide a methodology to prove the existence of (fiberwise hyperbolic) real-analytic invariant tori in real-analytic quasi-periodic skew-product dynamical systems that present nearly-invariant tori of the same characteristics. The methodology was based on the application of a Newton-Kantorovich theorem whose hypotheses were tested using Fourier analysis methods for a numerical approximation of the parameterization of an invariant torus.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Computer-Assisted Proofs Take on Fluid Flow
    Monroe, Don
    COMMUNICATIONS OF THE ACM, 2023, 66 (08) : 12 - 14
  • [33] An Approximate Analysis of Quasi-Periodic Systems Via Floquet Theory
    Sharma, Ashu
    Sinha, S. C.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (02):
  • [34] The Navier–Stokes Equation with Time Quasi-Periodic External Force: Existence and Stability of Quasi-Periodic Solutions
    Riccardo Montalto
    Journal of Dynamics and Differential Equations, 2021, 33 : 1341 - 1362
  • [35] Computer-assisted proofs of existence of KAM tori in planetary dynamical models of v-And b
    Mastroianni, Rita
    Locatelli, Ugo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [36] QUASI-PERIODIC SOLUTIONS OF THE LOTKA-VOLTERRA COMPETITION SYSTEMS WITH QUASI-PERIODIC PERTURBATIONS
    Liu, Qihuai
    Qian, Dingbian
    Wang, Zhiguo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (05): : 1537 - 1550
  • [37] Persistence of Periodic Orbits under State-dependent Delayed Perturbations: Computer-assisted Proofs
    Gimeno, Joan
    Lessard, Jean-Philippe
    James, J. D. Mireles
    Yang, Jiaqi
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03): : 1743 - 1779
  • [38] Fractional Fourier transform for quasi-periodic Bloch functions
    Chong, CC
    Vourdas, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (10): : 2478 - 2485
  • [39] GUIDE TO COMPUTER-ASSISTED METHODS FOR DISTRIBUTION SYSTEMS PLANNING
    GEOFFRION, AM
    SLOAN MANAGEMENT REVIEW, 1975, 16 (02): : 17 - 41
  • [40] Fractional Fourier transform for quasi-periodic Bloch functions
    Vourdas, A. (ee21@liverpool.ac.uk), 2001, OSA - The Optical Society (18):