Computer-Assisted Methods for Analyzing Periodic Orbits in Vibrating Gravitational Billiards

被引:0
|
作者
Church, Kevin E. M. [1 ]
Fortin, Clement [2 ]
机构
[1] McGill Univ, Dept Math & Stat, 805 Sherbrooke St W, Montreal, PQ H3A 0B9, Canada
[2] McGill Univ, Dept Phys, 805 Sherbrooke St W, Montreal, PQ H3A 0B9, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
Gravitational billiards; time-varying domain; periodic orbit; rigorous numerics; numerical continuation; BOUNCING BALL;
D O I
10.1142/S0218127421300214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using rigorous numerical methods, we prove the existence of 608 isolated periodic orbits in a gravitational billiard in a vibrating unbounded parabolic domain. We then perform pseudo-arclength continuation in the amplitude of the parabolic surface's oscillation to compute large, global branches of periodic orbits. These branches are themselves proven rigorously using computer-assisted methods. Our numerical investigations strongly suggest the existence of multiple pitchfork bifurcations in the billiard model. Based on the numerics, physical intuition and existing results for a simplified model, we conjecture that for any pair (k,p), there is a constant xi for which periodic orbits consisting of k impacts per period p cannot be sustained for amplitudes of oscillation below xi. We compute a verified upper bound for the conjectured critical amplitude for (k,p) = (2, 2) using our rigorous pseudo-arclength continuation.
引用
收藏
页数:18
相关论文
共 50 条