From classical periodic orbits in integrable -rational billiards to quantum energy spectrum

被引:0
|
作者
Panda, Subhasis [1 ]
Maulik, Sabyasachi [2 ,3 ]
Chakraborty, Somdeb [4 ]
Khastgir, S. Pratik [2 ,5 ]
机构
[1] NIT Silchar, Dept Phys, Cachar 788010, India
[2] IIT Kharagpur, Dept Phys, Kharagpur 721302, W Bengal, India
[3] Saha Inst Nucl Phys, 1-AF Bidhannagar, Kolkata 700064, India
[4] City Coll, Dept Phys, 102-1,Raja Rammohan Sarani, Kolkata 70009, India
[5] IIT Kharagpur, Ctr Theoret Studies, Kharagpur 721302, W Bengal, India
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2019年 / 134卷 / 06期
关键词
EQUILATERAL TRIANGLE; SEMICLASSICAL DYNAMICS; CIRCULAR DISK; SQUARE; EIGENFUNCTIONS; CONSTRUCTION; EIGENVALUES; MECHANICS; PARTICLE; EQUATION;
D O I
10.1140/epjp/i2019-12834-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
.In the present paper, we establish a remarkable connection between the length of the periodic orbit of a classical particle enclosed in a class of 2-dimensional planar billiards and the energy of a quantum particle confined to move in an identical region with infinitely high potential wall on the boundary. We observe that the quantum energy spectrum of the particle is in exact one-to-one correspondence with the spectrum of the amplitude squares of the periodic orbits of a classical particle for the class of integrable billiards considered. We have established the results by geometric constructions and exploiting the method of reflective tiling and folding of classical trajectories. We have further extended the method to 3-dimensional billiards, for which exact analytical results are scarcely available --exploiting the geometric construction, we determine the exact energy spectra of two new tetrahedral domains which we believe are integrable. We test the veracity of our results by comparing them with numerical results.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Extracting trajectory equations of classical periodic orbits from the quantum eigenmodes in two-dimensional integrable billiards
    Hsieh, Y. H.
    Yu, Y. T.
    Tuan, P. H.
    Tung, J. C.
    Huang, K. F.
    Chen, Y. F.
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [2] Characterizing classical periodic orbits from quantum Green's functions in two-dimensional integrable systems: Harmonic oscillators and quantum billiards
    Chen, Y. F.
    Tung, J. C.
    Tuan, P. H.
    Yu, Y. T.
    Liang, H. C.
    Huang, K. F.
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [3] From quantum spectra to classical orbits: the rectangular billiards
    Lu, J
    Du, ML
    ACTA PHYSICA SINICA, 2004, 53 (08) : 2450 - 2453
  • [4] Wave functions with localizations on classical periodic orbits in weakly perturbed quantum billiards
    Liu, C. C.
    Lu, T. H.
    Chen, Y. F.
    Huang, K. F.
    PHYSICAL REVIEW E, 2006, 74 (04)
  • [5] From quantum spectra to classical orbits: Varying rectangular billiards
    Jun Lu * Department of Foundational Science
    ProgressinNaturalScience, 2008, (08) : 927 - 930
  • [6] From quantum spectra to classical orbits: Varying rectangular billiards
    Lu, Jun
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (08) : 927 - 930
  • [7] CLASSICAL AND QUANTUM BILLIARDS - INTEGRABLE, NONINTEGRABLE AND PSEUDO-INTEGRABLE
    ZYCZKOWSKI, K
    ACTA PHYSICA POLONICA B, 1992, 23 (03): : 245 - 270
  • [8] Systematically Constructing Mesoscopic Quantum States Relevant to Periodic Orbits in Integrable Billiards from Directionally Resolved Level Distributions
    Chen, Yung-Fu
    Lin, Song-Qing
    Chang, Ru-Wei
    Yu, Yan-Ting
    Liang, Hsing-Chih
    SYMMETRY-BASEL, 2023, 15 (10):
  • [9] SKELETONS, PERIODIC ORBITS AND SUPERSCARS IN THE RATIONAL POLYGON BILLIARDS AND ELSEWHERE
    Giller, Stefan
    Janiak, Jaroslaw
    ACTA PHYSICA POLONICA B, 2013, 44 (08): : 1725 - 1764
  • [10] Duality between quantum and classical dynamics for integrable billiards
    Lu, WT
    Zeng, WQ
    Sridhar, S
    PHYSICAL REVIEW E, 2006, 73 (04):