A criterion for boundedness of composition operators acting on a class of Hilbert spaces of entire Dirichlet series, namely the class ℋ(E,βS)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, was obtained in Hou et al. (J. Math. Anal. Appl. 401: 416–429, 2013) for those spaces that do not contain non-zero constant functions, while other possibilities were not studied. In this paper, we first provide a complete characterization of boundedness of composition operators on any space ℋ(E,βS)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, which may or may not contain constant functions. We then study complex symmetry of composition operators on ℋ(E,βS)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, via analysis of composition conjugations.
机构:
Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, Singapore
Hou Xiaolu
Khoi, Le Hai
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, Singapore
机构:
Univ Blaise Pascal, Clermont Univ, Math Lab, BP 10448, F-63000 Clermont Ferrand, France
CNRS, UMR 6620, Math Lab, F-63177 Aubiere, FranceUniv Blaise Pascal, Clermont Univ, Math Lab, BP 10448, F-63000 Clermont Ferrand, France
Bayart, Frederic
Queffelec, Herye
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille Nord France, USTL, Lab Paul Painleve, CNRS,UMR 8524, F-59655 Villeneuve Dascq, FranceUniv Blaise Pascal, Clermont Univ, Math Lab, BP 10448, F-63000 Clermont Ferrand, France
Queffelec, Herye
Seip, Kristian
论文数: 0引用数: 0
h-index: 0
机构:
Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, NorwayUniv Blaise Pascal, Clermont Univ, Math Lab, BP 10448, F-63000 Clermont Ferrand, France
机构:
Univ Lille Nord de France UArtois, Lab Math Lens EA 2462, Federat CNRS Nord Pas de Calais FR 2956, F-62300 Lens, FranceUniv Lille Nord de France UArtois, Lab Math Lens EA 2462, Federat CNRS Nord Pas de Calais FR 2956, F-62300 Lens, France
Bailleul, Maxime
Brevig, Ole Fredrik
论文数: 0引用数: 0
h-index: 0
机构:
Norwegian Univ Sci & Technol NTNU, Dept Math Sci, NO-7491 Trondheim, NorwayUniv Lille Nord de France UArtois, Lab Math Lens EA 2462, Federat CNRS Nord Pas de Calais FR 2956, F-62300 Lens, France