Complex Symmetry of Composition Operators on Hilbert Spaces of Entire Dirichlet Series

被引:0
|
作者
Minh Luan Doan
Camille Mau
Le Hai Khoi
机构
[1] University of Notre Dame,Department of Mathematics
[2] Nanyang Technological University (NTU),Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
关键词
Hilbert space; Entire Dirichlet series; Composition operator; Conjugation; Complex symmetry; 30E20; 30D50;
D O I
暂无
中图分类号
学科分类号
摘要
A criterion for boundedness of composition operators acting on a class of Hilbert spaces of entire Dirichlet series, namely the class ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, was obtained in Hou et al. (J. Math. Anal. Appl. 401: 416–429, 2013) for those spaces that do not contain non-zero constant functions, while other possibilities were not studied. In this paper, we first provide a complete characterization of boundedness of composition operators on any space ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, which may or may not contain constant functions. We then study complex symmetry of composition operators on ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, via analysis of composition conjugations.
引用
收藏
页码:443 / 460
页数:17
相关论文
共 50 条
  • [41] Some properties of composition operators on entire Dirichlet series with real frequencies
    Hou Xiaolu
    Khoi, Le Hai
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (3-4) : 149 - 152
  • [42] Complex Symmetry of Linear Combinations of Composition Operators on the McCarthy-Bergman Space of Dirichlet Series
    Huang, Cheng-shi
    Jiang, Zhi-jie
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (03)
  • [43] Composition operators over weighted Bergman spaces of Dirichlet series
    Wang, Maofa
    He, Min
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) : 795 - 815
  • [44] Semigroups of Weighted Composition Operators on Hardy Spaces of Dirichlet Series
    Huang, Chengshi
    Wang, Maofa
    Yao, Xingxing
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2025, 19 (02)
  • [45] APPROXIMATION NUMBERS OF COMPOSITION OPERATORS ON Hp SPACES OF DIRICHLET SERIES
    Bayart, Frederic
    Queffelec, Herye
    Seip, Kristian
    ANNALES DE L INSTITUT FOURIER, 2016, 66 (02) : 551 - 588
  • [46] COMPOSITION OPERATORS ON BOHR-BERGMAN SPACES OF DIRICHLET SERIES
    Bailleul, Maxime
    Brevig, Ole Fredrik
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 129 - 142
  • [47] Iteration of composition operators on small Bergman spaces of Dirichlet series
    Zhao, Jing
    CONCRETE OPERATORS, 2018, 5 (01): : 24 - 34
  • [48] Hilbert spaces of Dirichlet series and their multipliers
    McCarthy, JE
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (03) : 881 - 893
  • [49] Multipliers of the Hilbert spaces of Dirichlet series
    Sahu, Chaman Kumar
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 323 - 334
  • [50] LINEAR COMBINATIONS OF COMPOSITION OPERATORS WITH LINEAR SYMBOLS ON A HILBERT SPACE OF DIRICHLET SERIES
    Bayart, Frederic
    Wang, Maofa
    Yao, Xingxing
    JOURNAL OF OPERATOR THEORY, 2021, 86 (01) : 231 - 251