Complex Symmetry of Composition Operators on Hilbert Spaces of Entire Dirichlet Series

被引:0
|
作者
Minh Luan Doan
Camille Mau
Le Hai Khoi
机构
[1] University of Notre Dame,Department of Mathematics
[2] Nanyang Technological University (NTU),Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
关键词
Hilbert space; Entire Dirichlet series; Composition operator; Conjugation; Complex symmetry; 30E20; 30D50;
D O I
暂无
中图分类号
学科分类号
摘要
A criterion for boundedness of composition operators acting on a class of Hilbert spaces of entire Dirichlet series, namely the class ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, was obtained in Hou et al. (J. Math. Anal. Appl. 401: 416–429, 2013) for those spaces that do not contain non-zero constant functions, while other possibilities were not studied. In this paper, we first provide a complete characterization of boundedness of composition operators on any space ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, which may or may not contain constant functions. We then study complex symmetry of composition operators on ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, via analysis of composition conjugations.
引用
收藏
页码:443 / 460
页数:17
相关论文
共 50 条
  • [21] Toeplitzness of composition operators on a Hilbert space of Dirichlet series
    Yao, Xingxing
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (05) : 625 - 639
  • [22] Compact composition operators on a Hilbert space of Dirichlet series
    Bayart, FR
    ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (03) : 725 - 743
  • [23] WEIGHTED COMPOSITION OPERATORS ON THE HILBERT SPACE OF DIRICHLET SERIES
    王茂发
    姚兴兴
    邓方文
    Acta Mathematica Scientia(English Series), 2018, 38 (04) : 1427 - 1440
  • [24] WEIGHTED COMPOSITION OPERATORS ON THE HILBERT SPACE OF DIRICHLET SERIES
    Wang, Maofa
    Yao, Xingxing
    Deng, Fangwen
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (04) : 1427 - 1440
  • [25] Compactness of composition operators on a Hilbert space of Dirichlet series
    Finet, C
    Queffélec, H
    Volberg, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (02) : 271 - 287
  • [26] Composition operators on spaces of double Dirichlet series
    Bayart, Frederic
    Castillo-Medina, Jaime
    Garcia, Domingo
    Maestre, Manuel
    Sevilla-Peris, Pablo
    REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (01): : 215 - 237
  • [27] Hardy Spaces of Dirichlet Series and Their Composition Operators
    Frédéric Bayart
    Monatshefte für Mathematik, 2002, 136 : 203 - 236
  • [28] New spaces of Dirichlet series and their composition operators
    Bayart, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (03): : 207 - 212
  • [29] Composition operators on spaces of double Dirichlet series
    Frédéric Bayart
    Jaime Castillo-Medina
    Domingo García
    Manuel Maestre
    Pablo Sevilla-Peris
    Revista Matemática Complutense, 2021, 34 : 215 - 237
  • [30] Hardy spaces of Dirichlet series and their composition operators
    Bayart, F
    MONATSHEFTE FUR MATHEMATIK, 2002, 136 (03): : 203 - 236