Complex Symmetry of Composition Operators on Hilbert Spaces of Entire Dirichlet Series

被引:0
|
作者
Minh Luan Doan
Camille Mau
Le Hai Khoi
机构
[1] University of Notre Dame,Department of Mathematics
[2] Nanyang Technological University (NTU),Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
关键词
Hilbert space; Entire Dirichlet series; Composition operator; Conjugation; Complex symmetry; 30E20; 30D50;
D O I
暂无
中图分类号
学科分类号
摘要
A criterion for boundedness of composition operators acting on a class of Hilbert spaces of entire Dirichlet series, namely the class ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, was obtained in Hou et al. (J. Math. Anal. Appl. 401: 416–429, 2013) for those spaces that do not contain non-zero constant functions, while other possibilities were not studied. In this paper, we first provide a complete characterization of boundedness of composition operators on any space ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, which may or may not contain constant functions. We then study complex symmetry of composition operators on ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, via analysis of composition conjugations.
引用
收藏
页码:443 / 460
页数:17
相关论文
共 50 条
  • [31] Composition Operators on Hilbert Spaces of Entire Functions of Several Variables
    Minh Luan Doan
    Le Hai Khoi
    Trieu Le
    Integral Equations and Operator Theory, 2017, 88 : 301 - 330
  • [32] Composition Operators on Hilbert Spaces of Entire Functions of Several Variables
    Doan, Minh Luan
    Khoi, Le Hai
    Le, Trieu
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 88 (03) : 301 - 330
  • [33] Composition operators on Hilbert spaces of entire functions with analytic symbols
    Stochel, Jan
    Stochel, Jerzy Bartlomiej
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (02) : 1019 - 1066
  • [34] Numerical range of composition operators on a Hilbert space of Dirichlet series
    Finet, C
    Queffélec, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 377 : 1 - 10
  • [35] INVARIANT SUBSPACES OF COMPOSITION OPERATORS ON A HILBERT SPACE OF DIRICHLET SERIES
    Wang, Maofa
    Yao, Xingxing
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (04): : 179 - 190
  • [36] Approximation numbers of composition operators on a Hilbert space of Dirichlet series
    Queffelec, Herve
    INVARIANT SUBSPACES OF THE SHIFT OPERATOR, 2015, 638 : 1 - 19
  • [37] Semigroups of composition operators on Hardy spaces of Dirichlet series
    Contreras, Manuel D.
    Gomez-Cabello, Carlos
    Rodriguez-Piazza, Luis
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (09)
  • [38] Composition operators on weighted Bergman spaces of Dirichlet series
    Bailleul, Maxime
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 340 - 363
  • [39] Complex Symmetry of Linear Combinations of Composition Operators on the McCarthy–Bergman Space of Dirichlet Series
    Cheng-shi Huang
    Zhi-jie Jiang
    Complex Analysis and Operator Theory, 2024, 18
  • [40] Closed range and cyclicity of composition operators on Hilbert spaces of entire functions
    Doan, Minh Luan
    Khoi, Le Hai
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (11) : 1558 - 1569