Complex Symmetry of Composition Operators on Hilbert Spaces of Entire Dirichlet Series

被引:0
|
作者
Minh Luan Doan
Camille Mau
Le Hai Khoi
机构
[1] University of Notre Dame,Department of Mathematics
[2] Nanyang Technological University (NTU),Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
关键词
Hilbert space; Entire Dirichlet series; Composition operator; Conjugation; Complex symmetry; 30E20; 30D50;
D O I
暂无
中图分类号
学科分类号
摘要
A criterion for boundedness of composition operators acting on a class of Hilbert spaces of entire Dirichlet series, namely the class ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, was obtained in Hou et al. (J. Math. Anal. Appl. 401: 416–429, 2013) for those spaces that do not contain non-zero constant functions, while other possibilities were not studied. In this paper, we first provide a complete characterization of boundedness of composition operators on any space ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, which may or may not contain constant functions. We then study complex symmetry of composition operators on ℋ(E,βS)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}(E, \beta _{S})$\end{document}, via analysis of composition conjugations.
引用
收藏
页码:443 / 460
页数:17
相关论文
共 50 条
  • [1] Complex Symmetry of Composition Operators on Hilbert Spaces of Entire Dirichlet Series
    Minh Luan Doan
    Mau, Camille
    Le Hai Khoi
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (02) : 443 - 460
  • [2] Hilbert spaces of entire Dirichlet series and composition operators
    Hou Xiaolu
    Hu Bingyang
    Khoi, Le Hai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 416 - 429
  • [3] Composition operators on Hilbert spaces of entire Dirichlet series
    Hou Xiaolu
    Hu Bingyang
    Khoi, Le Hai
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (19-20) : 875 - 878
  • [4] Composition Operators on Hilbert Spaces of Dirichlet Series
    Wang, Maofa
    He, Min
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (02): : 277 - 290
  • [5] COMPLEX SYMMETRY OF WEIGHTED COMPOSITION OPERATORS ON A HILBERT SPACE OF DIRICHLET SERIES
    Yao, Xingxing
    OPERATORS AND MATRICES, 2021, 15 (04): : 1597 - 1606
  • [6] Composition operators on weighted Hilbert spaces of Dirichlet series
    Kouroupis, Athanasios
    Perfekt, Karl-Mikael
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, : 837 - 868
  • [7] Dynamics of Composition Operators on Hilbert Spaces of Dirichlet Series
    Yao, Xingxing
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (04) : 1281 - 1291
  • [8] Dynamics of Composition Operators on Hilbert Spaces of Dirichlet Series
    Xingxing Yao
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1281 - 1291
  • [9] Topological Structure of the Spaces of Composition Operators on Hilbert Spaces of Dirichlet Series
    Hu, Bingyang
    Khoi, Le Hai
    Zhao, Ruhan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (03): : 267 - 284
  • [10] Some properties of composition operators on Hilbert spaces of Dirichlet series
    Wang, Maofa
    Yao, Xingxing
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (07) : 992 - 1004