In this paper,we investigate the coarse Ricci curvature on metric spaces with random walks. There exists no canonical random walk on metric space with a reference measure. However, we prove that a Bishop–Gromov inequality gives a lower bound of coarse Ricci curvature with respect to a random walk called an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r$$\end{document}-step random walk. The lower bound does not coincide with the constant corresponding to curvature in Bishop–Gromov inequality. As a corollary, we obtain a lower bound of coarse Ricci curvature with respect to an \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r$$\end{document}-step random walk for a metric measure space satisfying the curvature-dimension condition. Moreover we give an important example, Heisenberg group, which does not satisfy the curvature-dimension condition for any constant but has a lower bound of coarse Ricci curvature. We also have an estimate of the eigenvalues of the Laplacian by a lower bound of coarse Ricci curvature.
机构:
Jiangxi Normal Univ, Coll Math & Stat, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
机构:
Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R ChinaShanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
Wang, Yu-Zhao
Li, Huai-Qian
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
Macquarie Univ, Dept Math, N Ryde, NSW 2109, AustraliaShanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China