On a Lower Bound for the Laplacian Eigenvalues of a Graph

被引:0
|
作者
Gary R. W. Greaves
Akihiro Munemasa
Anni Peng
机构
[1] Nanyang Technological University,School of Physical and Mathematical Sciences
[2] Tohoku University,Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences
[3] Tongji University,School of Mathematical Sciences
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Laplacian eigenvalues; Degree sequence; 05E30; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
If μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _m$$\end{document} and dm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_m$$\end{document} denote, respectively, the m-th largest Laplacian eigenvalue and the m-th largest vertex degree of a graph, then μm⩾dm-m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _m \geqslant d_m-m+2$$\end{document}. This inequality was conjectured by Guo (Linear Multilinear Algebra 55:93–102, 2007) and proved by Brouwer and Haemers (Linear Algebra Appl 429:2131–2135, 2008). Brouwer and Haemers gave several examples of graphs achieving equality, but a complete characterisation was not given. In this paper we consider the problem of characterising graphs satisfying μm=dm-m+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _m = d_m-m+2$$\end{document}. In particular we give a full classification of graphs with μm=dm-m+2⩽1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _m = d_m-m+2 \leqslant 1$$\end{document}.
引用
收藏
页码:1509 / 1519
页数:10
相关论文
共 50 条
  • [1] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Greaves, Gary R. W.
    Munemasa, Akihiro
    Peng, Anni
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1509 - 1519
  • [2] A lower bound for the Laplacian eigenvalues of a graph - Proof of a conjecture by Guo
    Brouwer, Andries E.
    Haemers, Willem H.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) : 2131 - 2135
  • [3] Lower bounds of the Laplacian graph eigenvalues
    Torgasev, A
    Petrovic, M
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (04): : 589 - 593
  • [4] A lower bound for sums of eigenvalues of the Laplacian
    Melas, AD
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) : 631 - 636
  • [5] A New Upper Bound for Laplacian Graph Eigenvalues
    Hu, Shengbiao
    [J]. INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE, 2008, 1060 : 298 - 301
  • [6] An improved upper bound for Laplacian graph eigenvalues
    Das, KC
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 : 269 - 278
  • [7] A Universal Bound for Lower Neumann Eigenvalues of the Laplacian
    Wei Lu
    Jing Mao
    Chuanxi Wu
    [J]. Czechoslovak Mathematical Journal, 2020, 70 : 473 - 482
  • [8] A Universal Bound for Lower Neumann Eigenvalues of the Laplacian
    Lu, Wei
    Mao, Jing
    Wu, Chuanxi
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (02) : 473 - 482
  • [9] A new upper bound for eigenvalues of the Laplacian matrix of a graph
    Li, JS
    Zhang, XD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 265 : 93 - 100
  • [10] An always nontrivial upper bound for Laplacian graph eigenvalues
    Rojo, O
    Soto, R
    Rojo, H
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 312 (1-3) : 155 - 159