A New Upper Bound for Laplacian Graph Eigenvalues

被引:0
|
作者
Hu, Shengbiao [1 ]
机构
[1] Qinghai Nationalities Coll, Dept Math, Xinig 810007, Qinghai, Peoples R China
关键词
Laplacian matrix; Laplacian eigenvalues; upper bound;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let G= (V, E) be a graph with vertex set V = {v(1), v(2), ..., v(n)}. The degree of vi and the average degree of the adjacent vertices of vi are denoted by d(i) and m(vi), respectively. In this paper, we prove that max{d(v)m(v)/d(u) + d(u)m(u)/d(v) : uv is an element of E} is an upper bound for the largest Laplacian eigenvalue of G, the equality holds if G is a d-regular bipartite graph.
引用
收藏
页码:298 / 301
页数:4
相关论文
共 50 条
  • [1] A new upper bound for eigenvalues of the Laplacian matrix of a graph
    Li, JS
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 265 : 93 - 100
  • [2] A new upper bound for eigenvalues of the Laplacian matrix of a graph
    Li, Jiong-Sheng
    Zhang, Xiao-Dong
    Linear Algebra and Its Applications, 1997, 265 (1-3): : 93 - 100
  • [3] An improved upper bound for Laplacian graph eigenvalues
    Das, KC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 : 269 - 278
  • [4] An always nontrivial upper bound for Laplacian graph eigenvalues
    Rojo, O
    Soto, R
    Rojo, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 312 (1-3) : 155 - 159
  • [5] Note on an upper bound for sum of the Laplacian eigenvalues of a graph
    Chen, Xiaodan
    Li, Jingjian
    Fan, Yingmei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 : 258 - 265
  • [6] AN UPPER BOUND ON THE DIAMETER OF A GRAPH FROM EIGENVALUES ASSOCIATED WITH ITS LAPLACIAN
    CHUNG, FRK
    FABER, V
    MANTEUFFEL, TA
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (03) : 443 - 457
  • [7] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Gary R. W. Greaves
    Akihiro Munemasa
    Anni Peng
    Graphs and Combinatorics, 2017, 33 : 1509 - 1519
  • [8] On a Lower Bound for the Laplacian Eigenvalues of a Graph
    Greaves, Gary R. W.
    Munemasa, Akihiro
    Peng, Anni
    GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1509 - 1519
  • [9] An upper bound for small eigenvalues of the Laplacian
    Katz, NN
    OSAKA JOURNAL OF MATHEMATICS, 2003, 40 (02) : 449 - 454
  • [10] Upper bounds for the Laplacian graph eigenvalues
    Li, JS
    Pan, YL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 803 - 806