A New Upper Bound for Laplacian Graph Eigenvalues

被引:0
|
作者
Hu, Shengbiao [1 ]
机构
[1] Qinghai Nationalities Coll, Dept Math, Xinig 810007, Qinghai, Peoples R China
关键词
Laplacian matrix; Laplacian eigenvalues; upper bound;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let G= (V, E) be a graph with vertex set V = {v(1), v(2), ..., v(n)}. The degree of vi and the average degree of the adjacent vertices of vi are denoted by d(i) and m(vi), respectively. In this paper, we prove that max{d(v)m(v)/d(u) + d(u)m(u)/d(v) : uv is an element of E} is an upper bound for the largest Laplacian eigenvalue of G, the equality holds if G is a d-regular bipartite graph.
引用
收藏
页码:298 / 301
页数:4
相关论文
共 50 条
  • [31] Laplacian eigenvalues and the excess of a graph
    Rodríguez, JA
    Yebra, JLA
    ARS COMBINATORIA, 2002, 64 : 249 - 258
  • [32] A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph
    Shu, JL
    Hong, Y
    Wen-Ren, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 (1-3) : 123 - 129
  • [33] EXTREMAL GRAPH REALIZATIONS AND GRAPH LAPLACIAN EIGENVALUES
    Osting, Braxton
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (03) : 1630 - 1644
  • [34] A relation between the Laplacian and signless Laplacian eigenvalues of a graph
    Saieed Akbari
    Ebrahim Ghorbani
    Jack H. Koolen
    Mohammad Reza Oboudi
    Journal of Algebraic Combinatorics, 2010, 32 : 459 - 464
  • [35] Bounds for the extreme eigenvalues of the laplacian and signless laplacian of a graph
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2012, 182 (6) : 803 - 813
  • [36] A relation between the Laplacian and signless Laplacian eigenvalues of a graph
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jack H.
    Oboudi, Mohammad Reza
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) : 459 - 464
  • [37] A lower bound for sums of eigenvalues of the Laplacian
    Melas, AD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) : 631 - 636
  • [38] Laplacian eigenvalues of the second power of a graph
    Das, Kinkar Ch.
    Guo, Ji-Ming
    DISCRETE MATHEMATICS, 2013, 313 (05) : 626 - 634
  • [39] The largest two Laplacian eigenvalues of a graph
    Das, KC
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (06): : 441 - 460
  • [40] Lower bounds of the Laplacian graph eigenvalues
    Torgasev, A
    Petrovic, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (04): : 589 - 593