Ricci curvature for metric-measure spaces via optimal transport

被引:718
|
作者
Lott, John [1 ]
Villani, Cedric [2 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Ecole Normale Super Lyon, UMPA UMR CNRS 5669, F-69364 Lyon, France
基金
美国国家科学基金会;
关键词
LOGARITHMIC SOBOLEV INEQUALITIES; RIEMANNIAN-MANIFOLDS; EQUATIONS; GEOMETRY; MAPS;
D O I
10.4007/annals.2009.169.903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a notion of a measured length space X having nonnegative N-Ricci curvature, for N is an element of [1, infinity), or having infinity-Ricci curvature bounded below by K, for K is an element of R. The definitions are in terms of the displacement convexity of certain functions on the associated Wasserstein metric space P-2 (X) of probability measures. We show that these properties are preserved under measured Gromov-Hausdorff limits. We give geometric and analytic consequences.
引用
收藏
页码:903 / 991
页数:89
相关论文
共 50 条