Artificial Intelligence for Detecting Cephalometric Landmarks: A Systematic Review and Meta-analysis

被引:0
|
作者
Germana de Queiroz Tavares Borges Mesquita
Walbert A. Vieira
Maria Tereza Campos Vidigal
Bruno Augusto Nassif Travençolo
Thiago Leite Beaini
Rubens Spin-Neto
Luiz Renato Paranhos
Rui Barbosa de Brito Júnior
机构
[1] Postgraduate Program in Dentistry,Department of Restorative Dentistry, Endodontics Division, School of Dentistry of Piracicaba
[2] School of Dentistry,School of Dentistry
[3] São Leopoldo Mandic,School of Computing
[4] Campinas,Department of Preventive and Community Dentistry, School of Dentistry
[5] State University of Campinas,Department of Dentistry and Oral Health, Section for Oral Radiology
[6] Federal University of Uberlândia,undefined
[7] Federal University of Uberlândia,undefined
[8] Federal University of Uberlândia,undefined
[9] Aarhus University,undefined
来源
关键词
Artificial intelligence; Cephalometric landmarks; Dentistry; Deep Learning; Computer vision;
D O I
暂无
中图分类号
学科分类号
摘要
Using computer vision through artificial intelligence (AI) is one of the main technological advances in dentistry. However, the existing literature on the practical application of AI for detecting cephalometric landmarks of orthodontic interest in digital images is heterogeneous, and there is no consensus regarding accuracy and precision. Thus, this review evaluated the use of artificial intelligence for detecting cephalometric landmarks in digital imaging examinations and compared it to manual annotation of landmarks. An electronic search was performed in nine databases to find studies that analyzed the detection of cephalometric landmarks in digital imaging examinations with AI and manual landmarking. Two reviewers selected the studies, extracted the data, and assessed the risk of bias using QUADAS-2. Random-effects meta-analyses determined the agreement and precision of AI compared to manual detection at a 95% confidence interval. The electronic search located 7410 studies, of which 40 were included. Only three studies presented a low risk of bias for all domains evaluated. The meta-analysis showed AI agreement rates of 79% (95% CI: 76–82%, I2 = 99%) and 90% (95% CI: 87–92%, I2 = 99%) for the thresholds of 2 and 3 mm, respectively, with a mean divergence of 2.05 (95% CI: 1.41–2.69, I2 = 10%) compared to manual landmarking. The menton cephalometric landmark showed the lowest divergence between both methods (SMD, 1.17; 95% CI, 0.82; 1.53; I2 = 0%). Based on very low certainty of evidence, the application of AI was promising for automatically detecting cephalometric landmarks, but further studies should focus on testing its strength and validity in different samples.
引用
收藏
页码:1158 / 1179
页数:21
相关论文
共 50 条
  • [21] Application of artificial intelligence in laryngeal lesions: a systematic review and meta-analysis
    Marrero-Gonzalez, Alejandro R.
    Diemer, Tanner J.
    Nguyen, Shaun A.
    Camilon, Terence J. M.
    Meenan, Kirsten
    O'Rourke, Ashli
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2025, 282 (03) : 1543 - 1555
  • [22] SYSTEMATIC REVIEW WITH META-ANALYSIS: ARTIFICIAL INTELLIGENCE IN THE DIAGNOSIS OF ESOPHAGEAL DISEASES
    Visaggi, P.
    Barberio, B.
    Gregori, D.
    Azzolina, D.
    Martinato, M.
    Hassan, C.
    Sharma, P.
    Savarino, E.
    De Bortoli, N.
    DIGESTIVE AND LIVER DISEASE, 2022, 54 : S80 - S81
  • [23] Artificial intelligence for MRI stroke detection: a systematic review and meta-analysis
    Bojsen, Jonas Asgaard
    Elhakim, Mohammad Talal
    Graumann, Ole
    Gaist, David
    Nielsen, Mads
    Harbo, Frederik Severin Grae
    Krag, Christian Hedeager
    Sagar, Malini Vendela
    Kruuse, Christina
    Boesen, Mikael Ploug
    Rasmussen, Benjamin Schnack Brandt
    INSIGHTS INTO IMAGING, 2024, 15 (01):
  • [24] Artificial Intelligence in Anterior Chamber Evaluation: A Systematic Review and Meta-Analysis
    Olyntho Jr, Marco A. C.
    Jorge, Carlos A. C.
    Castanha, Everton B.
    Goncalves, Andreia N.
    Silva, Barbara L.
    Nogueira, Bernardo V.
    Lima, Geovana M.
    Gracitelli, Carolina P. B.
    Tatham, Andrew J.
    JOURNAL OF GLAUCOMA, 2024, 33 (09) : 658 - 664
  • [25] Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases
    Visaggi, Pierfrancesco
    Barberio, Brigida
    Gregori, Dario
    Azzolina, Danila
    Martinato, Matteo
    Hassan, Cesare
    Sharma, Prateek
    Savarino, Edoardo
    Bortoli, Nicola
    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2022, 55 (05) : 528 - 540
  • [26] Applications of artificial intelligence in Orthopaedic surgery: A systematic review and meta-analysis
    Geda, M. W.
    Tang, Yuk Ming
    Lee, C. K. M.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [27] Accuracy of artificial intelligence in caries detection: a systematic review and meta-analysis
    Luke, Alexander Maniangat
    Rezallah, Nader Nabil Fouad
    HEAD & FACE MEDICINE, 2025, 21 (01)
  • [28] ARTIFICIAL INTELLIGENCE IN THE DIAGNOSIS OF ESOPHAGEAL DISEASES: A SYSTEMATIC REVIEW WITH META-ANALYSIS
    Visaggi, Pierfrancesco
    Barberio, Brigida
    Gregori, Dario
    Azzolina, Danila
    Martinato, Matteo
    Hassan, Cesare
    Sharma, Prateek
    Savarino, Edoardo
    De Bortoli, Nicola
    GASTROENTEROLOGY, 2022, 162 (07) : S840 - S840
  • [29] Artificial intelligence as diagnostic modality for keratoconus: A systematic review and meta-analysis
    Afifah, Azzahra
    Syafira, Fara
    Afladhanti, Putri Mahirah
    Dharmawidiarini, Dini
    JOURNAL OF TAIBAH UNIVERSITY MEDICAL SCIENCES, 2024, 19 (02): : 296 - 303
  • [30] Reporting guidelines in medical artificial intelligence: a systematic review and meta-analysis
    Kolbinger, Fiona R.
    Veldhuizen, Gregory P.
    Zhu, Jiefu
    Truhn, Daniel
    Kather, Jakob Nikolas
    COMMUNICATIONS MEDICINE, 2024, 4 (01):