A mixed virtual element method for nearly incompressible linear elasticity equations

被引:0
|
作者
Huoyuan Duan
Ziliang Li
机构
[1] Wuhan University,School of Mathematics and Statistics
来源
关键词
Virtual element method; Nearly incompressible linear elasticity problem; Projection; Stabilization; Error estimates; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
A new virtual element method is proposed for numerically solving the nearly incompressible linear elasticity problem which involves a Lamé coefficient λ which would lead to the locking phenomenon as λ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \rightarrow \infty $\end{document}. We use the classical mixed formulation in terms of the displacement and the multiplier. In the new method, both displacement and multiplier are approximated by the any equal-order or any unequal-order virtual element spaces which are generated from the scalar Laplace operator −Δ. To establish the Babus̆ka-Brezzi inf-sup condition, two kinds of stabilizations are designed. The stability and the error estimates are proven uniformly in the Lamé coefficient, where the optimal error estimates in H1-norm and L2-norm are obtained for the displacement and the corresponding error bounds are also obtained for the multiplier. The error bounds obtained are uniform in the Lamé coefficient, and the new method is locking-free for λ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \rightarrow \infty $\end{document}. Numerical results are presented to illustrate the performance and the theoretical results of the new method.
引用
收藏
相关论文
共 50 条
  • [31] Isogeometric collocation: A mixed displacement-pressure method for nearly incompressible elasticity
    Morganti S.
    Fahrendorf F.
    de Lorenzis L.
    Evans J.A.
    Hughes T.J.R.
    Reali A.
    CMES - Computer Modeling in Engineering and Sciences, 2021, 129 (01):
  • [32] Isogeometric Collocation: A Mixed Displacement-Pressure Method for Nearly Incompressible Elasticity
    Morganti, S.
    Fahrendorf, F.
    De Lorenzis, L.
    Evans, J. A.
    Hughes, T. J. R.
    Reali, A.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (03): : 1125 - 1150
  • [33] An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity
    Houston, Paul
    Schotzau, Dominik
    Wihler, Thomas P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3224 - 3246
  • [34] An isogeometric method for linear nearly-incompressible elasticity with local stress projection
    Antolin, Pablo
    Bressan, Andrea
    Buffa, Annalisa
    Sangalli, Giancarlo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 694 - 719
  • [35] Gradient Robust Mixed Methods for Nearly Incompressible Elasticity
    Seshadri R. Basava
    Winnifried Wollner
    Journal of Scientific Computing, 2023, 95
  • [36] A mixed formulation for the Signorini problem in nearly incompressible elasticity
    Ben Belgacem, F
    Renard, Y
    Slimane, L
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (01) : 1 - 22
  • [37] Gradient Robust Mixed Methods for Nearly Incompressible Elasticity
    Basava, Seshadri R. R.
    Wollner, Winnifried
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (03)
  • [38] A STAGGERED CELL-CENTERED FINITE ELEMENT METHOD FOR COMPRESSIBLE AND NEARLY-INCOMPRESSIBLE LINEAR ELASTICITY ON GENERAL MESHES
    Thanh Hai Ong
    Thi Thao Phuong Hoang
    Bordas, Stephane P. A.
    Nguyen-Xuan, H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 2051 - 2073
  • [39] A simple and efficient Hellinger-Reissner type mixed finite element for nearly incompressible elasticity
    Viebahn, Nils
    Steeger, Karl
    Schroeder, Joerg
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 : 278 - 295
  • [40] A second-order virtual node algorithm for nearly incompressible linear elasticity in irregular domains
    Zhu, Yongning
    Wang, Yuting
    Hellrung, Jeffrey
    Cantarero, Alejandro
    Sifakis, Eftychios
    Teran, Joseph M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (21) : 7092 - 7117