An isogeometric method for linear nearly-incompressible elasticity with local stress projection

被引:11
|
作者
Antolin, Pablo [1 ]
Bressan, Andrea [2 ]
Buffa, Annalisa [2 ,3 ]
Sangalli, Giancarlo [1 ,2 ]
机构
[1] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[2] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, Via Ferrata 1, I-27100 Pavia, Italy
[3] Ecole Polytech Fed Lausanne, Math Inst Computat Sci & Engn, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
Nearly-incompressible elasticity; Inf-sup stability; Isogeometric analysis; B-method; Splines and NURBS; FINITE-ELEMENT METHODS; NURBS; APPROXIMATION; SPLINES;
D O I
10.1016/j.cma.2016.09.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose an isogeometric method for solving the linear nearly-incompressible elasticity problem. The method is similar to the (B) over bar formulation where the volumetric strain is projected on a lower degree spline space in order to prevent volumetric locking. In our method, we adopt a local projection on a coarser mesh, chosen in order to guarantee optimal convergence. Moreover the locality of the projector allows to maintain the sparsity of the stiffness matrix, that is, the efficiency of the method. The analysis of the method is based on the inf-sup stability of the associated mixed formulation via a macro-element technique for spline functions. The numerical tests confirm the theory of the method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:694 / 719
页数:26
相关论文
共 50 条
  • [1] Stress-hybrid virtual element method on quadrilateral meshes for compressible and nearly-incompressible linear elasticity
    Chen, Alvin
    Sukumar, N.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (03)
  • [2] Parameter-free preconditioning for nearly-incompressible linear elasticity
    Adler, James H.
    Hu, Xiaozhe
    Li, Yuwen
    Zikatanov, Ludmil T.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 154 : 39 - 44
  • [3] Strain smoothing for compressible and nearly-incompressible finite elasticity
    Lee, Chang-Kye
    Mihai, L. Angela
    Hale, Jack S.
    Kerfriden, Pierre
    Bordas, Stephane P. A.
    [J]. COMPUTERS & STRUCTURES, 2017, 182 : 540 - 555
  • [4] Stress-hybrid virtual element method on six-noded triangular meshes for compressible and nearly-incompressible linear elasticity
    Chen, Alvin
    Bishop, Joseph E.
    Sukumar, N.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 426
  • [5] Volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions
    Ortiz-Bernardin, A.
    Hale, J. S.
    Cyron, C. J.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 : 427 - 451
  • [6] A Reduced Local Discontinuous Galerkin Method for Nearly Incompressible Linear Elasticity
    Huang, Xuehai
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [7] A STAGGERED CELL-CENTERED FINITE ELEMENT METHOD FOR COMPRESSIBLE AND NEARLY-INCOMPRESSIBLE LINEAR ELASTICITY ON GENERAL MESHES
    Thanh Hai Ong
    Thi Thao Phuong Hoang
    Bordas, Stephane P. A.
    Nguyen-Xuan, H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 2051 - 2073
  • [8] Mixed stress-displacement isogeometric collocation for nearly incompressible elasticity and elastoplasticity
    Fahrendorf, Frederik
    Morganti, Simone
    Reali, Alessandro
    Hughes, Thomas J. R.
    De Lorenzis, Laura
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369
  • [9] Isogeometric Collocation: A Mixed Displacement-Pressure Method for Nearly Incompressible Elasticity
    Morganti, S.
    Fahrendorf, F.
    De Lorenzis, L.
    Evans, J. A.
    Hughes, T. J. R.
    Reali, A.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (03): : 1125 - 1150
  • [10] Isogeometric collocation: A mixed displacement-pressure method for nearly incompressible elasticity
    Morganti, S.
    Fahrendorf, F.
    de Lorenzis, L.
    Evans, J.A.
    Hughes, T.J.R.
    Reali, A.
    [J]. CMES - Computer Modeling in Engineering and Sciences, 2021, 129 (01):