A mixed virtual element method for nearly incompressible linear elasticity equations

被引:0
|
作者
Huoyuan Duan
Ziliang Li
机构
[1] Wuhan University,School of Mathematics and Statistics
来源
关键词
Virtual element method; Nearly incompressible linear elasticity problem; Projection; Stabilization; Error estimates; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
A new virtual element method is proposed for numerically solving the nearly incompressible linear elasticity problem which involves a Lamé coefficient λ which would lead to the locking phenomenon as λ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \rightarrow \infty $\end{document}. We use the classical mixed formulation in terms of the displacement and the multiplier. In the new method, both displacement and multiplier are approximated by the any equal-order or any unequal-order virtual element spaces which are generated from the scalar Laplace operator −Δ. To establish the Babus̆ka-Brezzi inf-sup condition, two kinds of stabilizations are designed. The stability and the error estimates are proven uniformly in the Lamé coefficient, where the optimal error estimates in H1-norm and L2-norm are obtained for the displacement and the corresponding error bounds are also obtained for the multiplier. The error bounds obtained are uniform in the Lamé coefficient, and the new method is locking-free for λ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \rightarrow \infty $\end{document}. Numerical results are presented to illustrate the performance and the theoretical results of the new method.
引用
收藏
相关论文
共 50 条
  • [41] Hybridization of the virtual element method for linear elasticity problems
    Dassi, Franco
    Lovadina, Carlo
    Visinoni, Michele
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (14): : 2979 - 3008
  • [42] HYBRID ELEMENT METHOD FOR INCOMPRESSIBLE AND NEARLY INCOMPRESSIBLE MATERIALS
    CHEUNG, YK
    CHEN, WJ
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1989, 25 (05) : 483 - 495
  • [43] MIXED VIRTUAL ELEMENT METHOD FOR LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    Suthar, Meghana
    Yadav, Sangita
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (03) : 504 - 527
  • [44] MIXED VIRTUAL ELEMENT METHOD FOR LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
    Suthar, Meghana
    Yadav, Sangita
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (04) : 504 - 527
  • [45] A variational multiscale a posteriori error estimation method for mixed form of nearly incompressible elasticity
    Masud, Arif
    Truster, Timothy J.
    Bergman, Lawrence A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (47-48) : 3453 - 3481
  • [46] B-bar virtual element method for nearly incompressible and compressible materials
    Park, Kyoungsoo
    Chi, Heng
    Paulino, Glaucio H.
    MECCANICA, 2021, 56 (06) : 1423 - 1439
  • [47] B-bar virtual element method for nearly incompressible and compressible materials
    Kyoungsoo Park
    Heng Chi
    Glaucio H. Paulino
    Meccanica, 2021, 56 : 1423 - 1439
  • [48] A MIXED FINITE ELEMENT METHOD FOR NEARLY INCOMPRESSIBLE MULTIPLE-NETWORK POROELASTICITY
    Lee, J. J.
    Piersanti, E.
    Mardal, K-a
    Rognes, M. E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A722 - A747
  • [49] Radial Basis Collocation Method for Nearly Incompressible Elasticity
    Wang, Lihua
    Zhong, Zheng
    JOURNAL OF ENGINEERING MECHANICS, 2013, 139 (04) : 439 - 451
  • [50] Scaled boundary finite element method for compressible and nearly incompressible elasticity over arbitrary polytopes
    Aladurthi, Lakshmi Narasimha Pramod
    Natarajan, Sundararajan
    Ooi, Ean Tat
    Song, Chongmin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (13) : 1379 - 1394