On Two-Dimensional Finite-Gap Potential Schroedinger and Dirac Operators with Singular Spectral Curves

被引:0
|
作者
I. A. Taimanov
机构
[1] Sobolev Institute of Mathematics,
来源
关键词
Schroedinger operator; Dirac operator; spectral curve; finite-gap integration;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a wide class of two-dimensional potential Schroedinger and Dirac operators which are finite-gap at the zero energy level and whose spectral curves at this level are singular, in particular may have n-multiple points with n≥3.
引用
收藏
页码:686 / 694
页数:8
相关论文
共 50 条
  • [42] On complex Fermi curves of two-dimensional, periodic Schrodinger operators
    Klauer, Alexander
    JOURNAL OF APPLIED ANALYSIS, 2014, 20 (01) : 55 - 76
  • [43] Two-dimensional discrete operators and rational functions on algebraic curves
    Leonchik, Polina A.
    Mironov, Andrey E.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 855 - 865
  • [44] Symmetry operators for Dirac's equation on two-dimensional spin manifolds
    Fatibene, Lorenzo
    McLenaghan, Raymond G.
    Rastelli, Giovanni
    Smith, Shane N.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (05)
  • [45] Self-adjointness of two-dimensional Dirac operators on corner domains
    Pizzichillo, Fabio
    Van den Bosch, Hanne
    JOURNAL OF SPECTRAL THEORY, 2021, 11 (03) : 1043 - 1079
  • [46] The Moutard transformation of two-dimensional Dirac operators and Möbius geometry
    I. A. Taimanov
    Mathematical Notes, 2015, 97 : 124 - 135
  • [47] A sufficient nonsingularity condition for a discrete finite-gap one-energy two-dimensional Schrodinger operator on the quad-graph
    Vasilevskii, B. O.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2015, 49 (03) : 210 - 213
  • [48] Tinene: a two-dimensional Dirac material with a 72 meV band gap
    Cai, Bo
    Zhang, Shengli
    Hu, Ziyu
    Hu, Yonghong
    Zou, Yousheng
    Zeng, Haibo
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (19) : 12634 - 12638
  • [49] On the two-dimensional stationary Schrodinger equation with a singular potential
    Kravchenko, Vladislav V.
    Meziani, Abdelhamid
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) : 420 - 427
  • [50] Spectral properties of the two-dimensional multiwell potential
    Chekanov, N. A.
    Shevchenko, E. V.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, (03): : 270 - 274