On Two-Dimensional Finite-Gap Potential Schroedinger and Dirac Operators with Singular Spectral Curves

被引:0
|
作者
I. A. Taimanov
机构
[1] Sobolev Institute of Mathematics,
来源
关键词
Schroedinger operator; Dirac operator; spectral curve; finite-gap integration;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a wide class of two-dimensional potential Schroedinger and Dirac operators which are finite-gap at the zero energy level and whose spectral curves at this level are singular, in particular may have n-multiple points with n≥3.
引用
收藏
页码:686 / 694
页数:8
相关论文
共 50 条
  • [21] Spectral regularity of a C*-algebra generated by two-dimensional singular integral operators
    Bart, Harm
    Ehrhardt, Torsten
    Silbermann, Bernd
    DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 : 79 - 88
  • [22] Dynamical gap generation in a two-dimensional Dirac semimetal with a deformed Dirac
    Xiao, Hai-Xiao
    Wang, Jing-Rong
    Feng, Hong-Tao
    Yin, Pei-Lin
    Zong, Hong-Shi
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [23] On spectral deformations and singular Weyl functions for one-dimensional Dirac operators
    Beigl, Alexander
    Eckhardt, Jonathan
    Kostenko, Aleksey
    Teschl, Gerald
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [24] The green function of the discrete finite-gap one-energy two-dimensional Schrodinger operator on the quad graph
    Vasilevskii, B. O.
    MATHEMATICAL NOTES, 2015, 98 (1-2) : 38 - 52
  • [25] On spectral estimates for two-dimensional Schrodinger operators
    Laptev, Ari
    Solomyak, Michael
    JOURNAL OF SPECTRAL THEORY, 2013, 3 (04) : 505 - 515
  • [26] INVERSE SCATTERING THEORY FOR ONE-DIMENSIONAL SCHRODINGER OPERATORS WITH STEPLIKE FINITE-GAP POTENTIALS
    de Monvel, Anne Boutet
    Egorova, Iryna
    Teschl, Gerald
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 106 (1): : 271 - 316
  • [27] Two-dimensional Fourier transform of scaled Dirac delta curves
    Guizar-Sicairos, M
    Gutiérrez-Vega, JC
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (09) : 1682 - 1688
  • [28] Self-Adjointness of Two-Dimensional Dirac Operators on Domains
    Rafael D. Benguria
    Søren Fournais
    Edgardo Stockmeyer
    Hanne Van Den Bosch
    Annales Henri Poincaré, 2017, 18 : 1371 - 1383
  • [29] The Moutard transformation of two-dimensional Dirac operators and Mobius geometry
    Taimanov, I. A.
    MATHEMATICAL NOTES, 2015, 97 (1-2) : 124 - 135
  • [30] A comparison of the eigenvalues of the Dirac and Laplace operators on a two-dimensional torus
    Ilka Agricola
    Bernd Ammann
    Thomas Friedrich
    manuscripta mathematica, 1999, 100 : 231 - 258