On the two-dimensional stationary Schrodinger equation with a singular potential

被引:1
|
作者
Kravchenko, Vladislav V. [1 ]
Meziani, Abdelhamid [2 ]
机构
[1] CINVESTAV IPN, Dept Math, Unidad Queretaro, Queretaro 76230, Mexico
[2] Florida Int Univ, Dept Math, Miami, FL 33199 USA
关键词
Singular potential; Vekua equation; Pseudoanalytic function; Generalized analytic function; Schrodinger equation; TRANSPLANT OPERATOR; V(R)=AR(2)+BR(-4)+CR(-6);
D O I
10.1016/j.jmaa.2010.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the equation -Delta u(x, y) + v(x, y)u(x, y) = 0 when the potential v has the following expression v(r, theta) = A(theta)/r(2) where (r, 0) are the polar coordinates in R(2) and A is a 2 pi-periodic function of class C(k) with k >= 1. We obtain series representations for solutions in a full neighborhood of the singular point and we also give representations in terms of pseudoanalytic formal powers in sectors having the singular point as a vertex. The results are obtained with the aid of the reduction of the stationary Schrodinger equation to a Vekua equation of a special form and by using recent developments in pseudoanalytic function theory. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:420 / 427
页数:8
相关论文
共 50 条
  • [1] Stationary states for a two-dimensional singular Schrodinger equation
    Caldiroli, P
    Musina, R
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4B (03): : 609 - 633
  • [2] Potential reconstruction for two-dimensional discrete Schrodinger equation
    Serdyukova, SI
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 534 (1-2): : 304 - 308
  • [3] Absorbing boundary conditions for the two-dimensional Schrodinger equation with an exterior potential
    Antoine, Xavier
    Besse, Christophe
    Klein, Pauline
    [J]. NUMERISCHE MATHEMATIK, 2013, 125 (02) : 191 - 223
  • [4] NUMERICAL-SIMULATION OF SINGULAR SOLUTIONS TO THE TWO-DIMENSIONAL CUBIC SCHRODINGER-EQUATION
    SULEM, PL
    SULEM, C
    PATERA, A
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (06) : 755 - 778
  • [6] On singular potential of the Schrodinger equation
    Nishikawa, M
    [J]. MODERN PHYSICS LETTERS A, 2003, 18 (28) : 1991 - 1999
  • [7] Solitons in the two-dimensional fractional Schrodinger equation with radially symmetric PT potential
    Liang, Hexi
    Xu, Si-liu
    Deng, Wen-wu
    Dai, Yonghong
    Li, Hong
    Belic, Milivoj R.
    Zhao, Yuan
    Ai, Yong
    [J]. OPTIK, 2020, 202
  • [8] Formation of fundamental solitons in the two-dimensional nonlinear Schrodinger equation with a lattice potential
    Chen, Q. Y.
    Kevrekidis, P. G.
    Malomed, B. A.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2010, 58 (01): : 141 - 146
  • [9] A singular Liouville equation on two-dimensional domains
    Marcelo Montenegro
    Matheus F. Stapenhorst
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2447 - 2480
  • [10] NONLOCAL DARBOUX TRANSFORMATION OF THE TWO-DIMENSIONAL STATIONARY SCHRODINGER EQUATION AND ITS RELATION TO THE MOUTARD TRANSFORMATION
    Kudryavtsev, A. G.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 187 (01) : 455 - 462