Regularized numerical methods for the logarithmic Schrödinger equation

被引:0
|
作者
Weizhu Bao
Rémi Carles
Chunmei Su
Qinglin Tang
机构
[1] National University of Singapore,Department of Mathematics
[2] Univ Rennes,CNRS, IRMAR
[3] Technische Universität München, UMR 6625
[4] Sichuan University,Zentrum Mathematik
来源
Numerische Mathematik | 2019年 / 143卷
关键词
35Q40; 35Q55; 65M15; 81Q05;
D O I
暂无
中图分类号
学科分类号
摘要
We present and analyze two numerical methods for the logarithmic Schrödinger equation (LogSE) consisting of a regularized splitting method and a regularized conservative Crank–Nicolson finite difference method (CNFD). In order to avoid numerical blow-up and/or to suppress round-off error due to the logarithmic nonlinearity in the LogSE, a regularized logarithmic Schrödinger equation (RLogSE) with a small regularized parameter 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \ll 1$$\end{document} is adopted to approximate the LogSE with linear convergence rate O(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon )$$\end{document}. Then we use the Lie–Trotter splitting integrator to solve the RLogSE and establish its error bound O(τ1/2ln(ε-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau ^{1/2}\ln (\varepsilon ^{-1}))$$\end{document} with τ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau >0$$\end{document} the time step, which implies an error bound at O(ε+τ1/2ln(ε-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon +\tau ^{1/2}\ln (\varepsilon ^{-1}))$$\end{document} for the LogSE by the Lie–Trotter splitting method. In addition, the CNFD is also applied to discretize the RLogSE, which conserves the mass and energy in the discretized level. Numerical results are reported to confirm our error bounds and to demonstrate rich and complicated dynamics of the LogSE.
引用
收藏
页码:461 / 487
页数:26
相关论文
共 50 条
  • [31] Analytical and numerical solutions of the Schrödinger–KdV equation
    MANEL LABIDI
    GHODRAT EBADI
    ESSAID ZERRAD
    ANJAN BISWAS
    Pramana, 2012, 78 : 59 - 90
  • [32] On CP, LP and other piecewise perturbation methods for the numerical solution of the Schrödinger equation
    Veerle Ledoux
    Marnix Van Daele
    Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 993 - 1011
  • [33] Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation
    Th. Monovasilis
    Z. Kalogiratou
    Th. Monovasilis
    T. E. Simos
    Journal of Mathematical Chemistry, 2006, 40 : 257 - 267
  • [34] Method for Numerical Solution of the Stationary Schrödinger Equation
    S. Yu. Knyazev
    E. E. Shcherbakova
    Russian Physics Journal, 2017, 59 : 1616 - 1622
  • [35] Accurate and efficient numerical methods for the nonlinear Schrödinger equation with Dirac delta potential
    Xuanxuan Zhou
    Yongyong Cai
    Xingdong Tang
    Guixiang Xu
    Calcolo, 2023, 60
  • [36] Existence and Multiplicity of Solutions for the Logarithmic Schrödinger Equation with a Potential on Lattice Graphs
    He, Zhentao
    Ji, Chao
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (12)
  • [37] A family of P-stable exponentially‐fitted methods for the numerical solution of the Schrödinger equation
    T.E. Simos
    Journal of Mathematical Chemistry, 1999, 25 : 65 - 84
  • [38] High-Accuracy Numerical Methods and Convergence Analysis for Schrödinger Equation with Incommensurate Potentials
    Jiang, Kai
    Li, Shifeng
    Zhang, Juan
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (01)
  • [39] Phase fitted symplectic partitioned Runge–Kutta methods for the numerical integration of the Schrödinger equation
    Th. Monovasilis
    Journal of Mathematical Chemistry, 2012, 50 : 1736 - 1746
  • [40] Modeling of Water Clusters by Numerical Solution of the Schrödinger Equation
    K. E. Plokhotnikov
    Physics of Wave Phenomena, 2022, 30 : 156 - 168