Phase fitted symplectic partitioned Runge–Kutta methods for the numerical integration of the Schrödinger equation

被引:0
|
作者
Th. Monovasilis
机构
[1] Technological Educational Institution of Western Macedonia at Kastoria,Department of International Trade
来源
关键词
Partitioned Runge Kutta methods; Symplectic methods; Schrödinger equation; Phase-lag; Phase-fitted;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we consider explicit symplectic partitioned Runge–Kutta methods with five stages for problems with separable Hamiltonian. We construct three new methods, one with constant coefficients of eight phase-lag order and two phase-fitted methods.
引用
收藏
页码:1736 / 1746
页数:10
相关论文
共 50 条
  • [1] Phase fitted symplectic partitioned Runge-Kutta methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (07) : 1736 - 1746
  • [2] Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation
    Z.A. Anastassi
    T.E. Simos
    Journal of Mathematical Chemistry, 2005, 37 : 281 - 293
  • [3] Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation
    Th. Monovasilis
    Z. Kalogiratou
    T.E. Simos
    Journal of Mathematical Chemistry, 2005, 37 : 263 - 270
  • [4] A Phase-fitted Symplectic Partitioned Runge-Kutta Methods for the Numerical Solution of the Schrodinger Equation
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1595 - +
  • [5] Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation
    Th. Monovasilis
    Z. Kalogiratou
    Th. Monovasilis
    T. E. Simos
    Journal of Mathematical Chemistry, 2006, 40 : 257 - 267
  • [6] A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation
    T.E. Simos
    Jesus Vigo Aguiar
    Journal of Mathematical Chemistry, 2001, 30 : 121 - 131
  • [7] Symplectic trigonometrically fitted partitioned Runge-Kutta methods
    Kalogiratou, Z.
    PHYSICS LETTERS A, 2007, 370 (01) : 1 - 7
  • [8] Computation of the eigenvalues of the Schrodinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    PHYSICS LETTERS A, 2008, 372 (05) : 569 - 573
  • [9] TWO NEW PHASE-FITTED SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2011, 22 (12): : 1343 - 1355
  • [10] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96