Regularized numerical methods for the logarithmic Schrödinger equation

被引:0
|
作者
Weizhu Bao
Rémi Carles
Chunmei Su
Qinglin Tang
机构
[1] National University of Singapore,Department of Mathematics
[2] Univ Rennes,CNRS, IRMAR
[3] Technische Universität München, UMR 6625
[4] Sichuan University,Zentrum Mathematik
来源
Numerische Mathematik | 2019年 / 143卷
关键词
35Q40; 35Q55; 65M15; 81Q05;
D O I
暂无
中图分类号
学科分类号
摘要
We present and analyze two numerical methods for the logarithmic Schrödinger equation (LogSE) consisting of a regularized splitting method and a regularized conservative Crank–Nicolson finite difference method (CNFD). In order to avoid numerical blow-up and/or to suppress round-off error due to the logarithmic nonlinearity in the LogSE, a regularized logarithmic Schrödinger equation (RLogSE) with a small regularized parameter 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \ll 1$$\end{document} is adopted to approximate the LogSE with linear convergence rate O(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon )$$\end{document}. Then we use the Lie–Trotter splitting integrator to solve the RLogSE and establish its error bound O(τ1/2ln(ε-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau ^{1/2}\ln (\varepsilon ^{-1}))$$\end{document} with τ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau >0$$\end{document} the time step, which implies an error bound at O(ε+τ1/2ln(ε-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon +\tau ^{1/2}\ln (\varepsilon ^{-1}))$$\end{document} for the LogSE by the Lie–Trotter splitting method. In addition, the CNFD is also applied to discretize the RLogSE, which conserves the mass and energy in the discretized level. Numerical results are reported to confirm our error bounds and to demonstrate rich and complicated dynamics of the LogSE.
引用
收藏
页码:461 / 487
页数:26
相关论文
共 50 条
  • [41] Recent advances in the numerical solution of the Nonlinear Schrödinger Equation
    Barletti, Luigi
    Brugnano, Luigi
    Gurioli, Gianmarco
    Iavernaro, Felice
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 445
  • [42] Recent advances in the numerical solution of the Nonlinear Schrödinger Equation
    Barletti, Luigi
    Brugnano, Luigi
    Gurioli, Gianmarco
    Iavernaro, Felice
    Journal of Computational and Applied Mathematics, 2024, 445
  • [43] Numerical Integrators for Continuous Disordered Nonlinear Schrödinger Equation
    Xiaofei Zhao
    Journal of Scientific Computing, 2021, 89
  • [44] A numerical method for solving the time fractional Schrödinger equation
    Na Liu
    Wei Jiang
    Advances in Computational Mathematics, 2018, 44 : 1235 - 1248
  • [45] Analytic and numerical solutions for systems of fractional Schrödinger equation
    Rabha W Ibrahim
    Hamid A Jalab
    Journal of Inequalities and Applications, 2015
  • [46] A numerical solution of Schrödinger equation for the dynamics of early universe
    Mughal, M. Z.
    Khan, F.
    ASTRONOMY AND COMPUTING, 2025, 50
  • [47] Logarithmic counterpart for semilinear Schrödinger equations
    Flank D. M. Bezerra
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [48] Exponentially and Trigonometrically Fitted Methods for the Solution of the Schrödinger Equation
    T. E. Simos
    Acta Applicandae Mathematicae, 2010, 110 : 1331 - 1352
  • [49] A generalized nonlinear Schrödinger equation with logarithmic nonlinearity and its Gaussian solitary wave
    Hosseini, K.
    Alizadeh, F.
    Hincal, E.
    Kaymakamzade, B.
    Dehingia, K.
    Osman, M. S.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (06)
  • [50] Maximum Principle for the Regularized Schrödinger Operator
    R. S. Kraußhar
    M. M. Rodrigues
    N. Vieira
    Results in Mathematics, 2016, 69 : 49 - 68