Regularized numerical methods for the logarithmic Schrödinger equation

被引:0
|
作者
Weizhu Bao
Rémi Carles
Chunmei Su
Qinglin Tang
机构
[1] National University of Singapore,Department of Mathematics
[2] Univ Rennes,CNRS, IRMAR
[3] Technische Universität München, UMR 6625
[4] Sichuan University,Zentrum Mathematik
来源
Numerische Mathematik | 2019年 / 143卷
关键词
35Q40; 35Q55; 65M15; 81Q05;
D O I
暂无
中图分类号
学科分类号
摘要
We present and analyze two numerical methods for the logarithmic Schrödinger equation (LogSE) consisting of a regularized splitting method and a regularized conservative Crank–Nicolson finite difference method (CNFD). In order to avoid numerical blow-up and/or to suppress round-off error due to the logarithmic nonlinearity in the LogSE, a regularized logarithmic Schrödinger equation (RLogSE) with a small regularized parameter 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \ll 1$$\end{document} is adopted to approximate the LogSE with linear convergence rate O(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon )$$\end{document}. Then we use the Lie–Trotter splitting integrator to solve the RLogSE and establish its error bound O(τ1/2ln(ε-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau ^{1/2}\ln (\varepsilon ^{-1}))$$\end{document} with τ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau >0$$\end{document} the time step, which implies an error bound at O(ε+τ1/2ln(ε-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon +\tau ^{1/2}\ln (\varepsilon ^{-1}))$$\end{document} for the LogSE by the Lie–Trotter splitting method. In addition, the CNFD is also applied to discretize the RLogSE, which conserves the mass and energy in the discretized level. Numerical results are reported to confirm our error bounds and to demonstrate rich and complicated dynamics of the LogSE.
引用
收藏
页码:461 / 487
页数:26
相关论文
共 50 条
  • [1] Regularized numerical methods for the logarithmic Schrodinger equation
    Bao, Weizhu
    Carles, Remi
    Su, Chunmei
    Tang, Qinglin
    NUMERISCHE MATHEMATIK, 2019, 143 (02) : 461 - 487
  • [2] Energy-preserving RERK-FEM for the regularized logarithmic Schrödinger equation
    Yao, Changhui
    Li, Lei
    Fan, Huijun
    Zhao, Yanmin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 180 : 76 - 85
  • [3] Logarithmic Schr?dinger equation and isothermal fluids
    Carles, Remi
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2022, 9 (01) : 99 - 134
  • [4] A family of multiderivative methods for the numerical solution of the Schrödinger equation
    D.P. Sakas
    T.E. Simos
    Journal of Mathematical Chemistry, 2005, 37 : 317 - 332
  • [5] The Cauchy Problem for the Logarithmic Schrödinger Equation Revisited
    Hayashi, Masayuki
    Ozawa, Tohru
    ANNALES HENRI POINCARE, 2024, : 1209 - 1238
  • [6] Kink Soliton Solutions in the Logarithmic Schrödinger Equation
    Scott, Tony C.
    Glasser, M. Lawrence
    MATHEMATICS, 2025, 13 (05)
  • [7] LOW REGULARITY SOLUTIONS TO THE LOGARITHMIC SCHRÖDINGER EQUATION
    Carles, Remi
    Hayashi, Masayuki
    Ozawa, Tohru
    PURE AND APPLIED ANALYSIS, 2024, 6 (03):
  • [8] On the Cauchy problem for logarithmic fractional Schrödinger equation
    Carles, Remi
    Dong, Fangyuan
    PORTUGALIAE MATHEMATICA, 2025, 82 (1-2) : 155 - 175
  • [9] A new methodology for the development of numerical methods for the numerical solution of the Schrödinger equation
    Z. A. Anastassi
    D. S. Vlachos
    T. E. Simos
    Journal of Mathematical Chemistry, 2009, 46 : 621 - 651
  • [10] Exponentially - Fitted Multiderivative Methods for the Numerical Solution of the Schrödinger Equation
    T.E. Simos
    Journal of Mathematical Chemistry, 2004, 36 : 13 - 27