Regularized numerical methods for the logarithmic Schrodinger equation

被引:29
|
作者
Bao, Weizhu [1 ]
Carles, Remi [2 ]
Su, Chunmei [3 ]
Tang, Qinglin [4 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Univ Rennes, UMR 6625, CNRS, IRMAR, F-35000 Rennes, France
[3] Tech Univ Munich, Zentrum Math, D-85748 Garching, Germany
[4] Sichuan Univ, Sch Math, State Key Lab Hydraul & Mt River Engn, Chengdu 610064, Peoples R China
关键词
GROSS-PITAEVSKII EQUATION; FINITE-DIFFERENCE METHODS; TIME-SPLITTING METHODS; APPROXIMATIONS; CONVERGENCE; SOLITONS; SCHEME; ENERGY; MODEL;
D O I
10.1007/s00211-019-01058-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze two numerical methods for the logarithmic Schrodinger equation (LogSE) consisting of a regularized splitting method and a regularized conservative Crank-Nicolson finite difference method (CNFD). In order to avoid numerical blow-up and/or to suppress round-off error due to the logarithmic nonlinearity in the LogSE, a regularized logarithmic Schrodinger equation (RLogSE) with a small regularized parameter 0 < epsilon << 1 is adopted to approximate the LogSE with linear convergence rate O(epsilon). Then we use the Lie-Trotter splitting integrator to solve the RLogSE and establish its error bound O(tau(1/2)ln(epsilon(-1))) with tau > 0 the time step, which implies an error bound at O(epsilon+tau(1/2) ln(epsilon(-1))) for the LogSE by the Lie-Trotter splitting method. In addition, the CNFD is also applied to discretize the RLogSE, which conserves the mass and energy in the discretized level. Numerical results are reported to confirm our error bounds and to demonstrate rich and complicated dynamics of the LogSE.
引用
收藏
页码:461 / 487
页数:27
相关论文
共 50 条
  • [1] Numerical solution of the regularized logarithmic Schrodinger equation on unbounded domains
    Li, Hongwei
    Zhao, Xin
    Hu, Yunxia
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 140 : 91 - 103
  • [2] Regularized numerical methods for the logarithmic Schrödinger equation
    Weizhu Bao
    Rémi Carles
    Chunmei Su
    Qinglin Tang
    [J]. Numerische Mathematik, 2019, 143 : 461 - 487
  • [3] Regularized Numerical Methods for the Nonlinear Schrodinger Equation with Singular Nonlinearity
    Bao, Weizhu
    Feng, Yue
    Ma, Ying
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (03) : 646 - 670
  • [4] ERROR ESTIMATES OF A REGULARIZED FINITE DIFFERENCE METHOD FOR THE LOGARITHMIC SCHRODINGER EQUATION
    Bat, Weizhu
    Carles, Remi
    Su, Chunmei
    Tang, Qinglin
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 657 - 680
  • [5] Regularized splitting spectral method for space-fractional logarithmic Schrodinger equation
    Cheng, Bianru
    Guo, Zhenhua
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 167 : 330 - 355
  • [6] ON THE LOGARITHMIC SCHRODINGER EQUATION
    D'Avenia, Pietro
    Montefusco, Eugenio
    Squassina, Marco
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (02)
  • [7] NUMERICAL STUDY OF THE LOGARITHMIC SCHRODINGER EQUATION WITH REPULSIVE HARMONIC POTENTIAL
    Carles, Remi
    Su, Chunmei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (05): : 3136 - 3159
  • [8] The stochastic logarithmic Schrodinger equation
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (02): : 123 - 149
  • [9] Embedded methods for the numerical solution of the Schrodinger equation
    Avdelas, G.
    Simos, T.E.
    [J]. Computers and Mathematics with Applications, 1996, 31 (02): : 85 - 102
  • [10] Symplectic methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    Simos, T. E.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2007, 38 (03) : 526 - 532