Multi-peak solutions for a class of nonlinear Schrödinger equations

被引:0
|
作者
Angela Pistoia
机构
[1] Dipartimento Me.Mo.Mat.,
[2] via A.Scarpa 16,undefined
[3] 00100 Roma,undefined
[4] e-mail: pistoia@dmmm.uniroma1.it,undefined
关键词
Key words: Nonlinear Schrödinger equation, multi-peak solutions, Liapunov-Schmidt reduction.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the study of positive solutions of¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ -\varepsilon^2\Delta u+\lambda u=f(x,u)\quad {\rm on}\quad \mathbb{R}^N, $\end{document}¶¶where ε is a small parameter, λ>0 and f is an appropriate function. Here we find multi-peak solutions exhibiting concentration at any prescribed "stable" set of zeroes of the field¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal S}(P)=\int\limits_{\mathbb{R}^N}\left[\nabla_xf(P,U_P(y))\cdot y\right]\nabla U_P(y)dy,\quad P\in \mathbb{R}^N, $\end{document}¶¶where UP is the unique radial solution of the limit equation¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ -\Delta U_P+\lambda U_P=f(P,U_P)\quad {\rm on} \quad \mathbb{R}^N. $\end{document}¶¶Conversely, we show that the points at which a sequence of multi-peak solutions concentrate must be zeroes of the field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\cal S} $\end{document}.
引用
收藏
页码:69 / 91
页数:22
相关论文
共 50 条
  • [1] Multi-peak positive solutions for nonlinear Schrödinger equations with critical frequency
    Yohei Sato
    Calculus of Variations and Partial Differential Equations, 2007, 29 : 365 - 395
  • [2] Multi-Peak Solutions for Coupled Nonlinear Schrödinger Systems in Low Dimensions
    Maoding Zhen
    Binlin Zhang
    Vicenţiu D. Rădulescu
    Applied Mathematics & Optimization, 2023, 88
  • [3] Sign-Changing Multi-Peak Solutions for Nonlinear Schrödinger Equations with Compactly Supported Potential
    Mingwen Fei
    Acta Applicandae Mathematicae, 2013, 127 : 137 - 154
  • [4] Multi-peak solutions for a class of nonlinear Schrodinger equations
    Pistoia, A
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (01): : 69 - 91
  • [5] GLOBAL SOLUTIONS FOR A CLASS OF NONLINEAR SCHRDINGER EQUATIONS
    梅茗
    Chinese Science Bulletin, 1991, (18) : 1578 - 1578
  • [6] Multi-peak positive solutions to a class of Kirchhoff equations
    Luo, Peng
    Peng, Shuangjie
    Wang, Chunhua
    Xiang, Chang-Lin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1097 - 1122
  • [7] Multi-peak solutions for a class of degenerate elliptic equations
    Giacomini, A
    Squassina, M
    ASYMPTOTIC ANALYSIS, 2003, 36 (02) : 115 - 147
  • [8] Orthogonal multi-peak solitons from the coupled fractional nonlinear Schrödinger equation
    dos Santos, Mateus C. P.
    CHAOS SOLITONS & FRACTALS, 2024, 183
  • [9] Soliton solutions of a class of generalized nonlinear schrödinger equations
    Cao Q.
    Zhang T.
    Djidjeli K.
    Price G.W.
    Twizell E.H.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (4) : 389 - 398
  • [10] Multi-peak positive solutions for a logarithmic Schrödinger equation via variational methods
    Claudianor O. Alves
    Chao Ji
    Israel Journal of Mathematics, 2024, 259 : 835 - 885