Multi-peak positive solutions for nonlinear Schrödinger equations with critical frequency

被引:0
|
作者
Yohei Sato
机构
[1] Waseda University,Department of Mathematics, School of Science and Engineering
关键词
Global Minimum; Critical Frequency; Energy Solution; Limit Equation; Mountain Pass;
D O I
暂无
中图分类号
学科分类号
摘要
We study the nonlinear Schrödinger equations: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\epsilon^{2}\Delta u + V(x)u=u^p,\quad u > 0\quad \mbox{in } {\bf R}^{N},\quad u\in H^{1} ({\bf R}^{N}).$$\end{document} where p > 1 is a subcritical exponent and V(x) is nonnegative potential function which has “critical frequency” \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\inf_{x\in{\bf R}^{N}} V(x)=0$$\end{document}. We also assume that V(x) satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 < \liminf_{|x|\to\infty}V(x)\le \sup_{x\in{\bf R}^{N}}V(x) < \infty$$\end{document} and V(x) has k local or global minima. In critical frequency cases, Byeon-Wang [5,6] showed the existence of single-peak solutions which concentrating around global minimum of V(x). Their limiting profiles—which depend on the local behavior of the potential V(x)—are quite different features from non-critical frequency case. We show the existence of multi-peak positive solutions joining single-peak solutions which concentrate around prescribed local or global minima of V(x). Moreover, under additional conditions on the behavior of V(x), we state the limiting profiles of peaks of solutions uε(x) as follows: rescaled function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_\epsilon(y)=\left(\frac{g(\epsilon)}{\epsilon}\right)^{\frac{2}{p-1}} u_\epsilon(g(\epsilon)y+x_\epsilon)$$\end{document} converges to a least energy solution of −Δw + V0(y) w = wp, w > 0 in Ω0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in H^{1}_0(\Omega_0)$$\end{document}. Here g(ε), V0(x) and Ω0 depend on the local behaviors of V(x).
引用
收藏
页码:365 / 395
页数:30
相关论文
共 50 条