Covering the Sphere with Equal Circles

被引:0
|
作者
Lienhard Wimmer
机构
[1] NTA Isny,
来源
关键词
Covering; Sphere; Equal circles; Schütte arrangement; Spherical arrangement; 52C15; 52C17; 51M16;
D O I
暂无
中图分类号
学科分类号
摘要
How has a sphere to be covered by n equal circles so that the angular radius of the circles will be as small as possible? In this note the problem is solved for n=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=8$$\end{document} and the combinatorial type of the solution for n=9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 9$$\end{document} is determined.
引用
收藏
页码:763 / 781
页数:18
相关论文
共 50 条
  • [31] Circles orthogonal to a given sphere
    Moore, CLE
    ANNALS OF MATHEMATICS, 1906, 8 : 57 - 72
  • [32] Exact algorithms for circles on the sphere
    Vinícius, M
    Andrade, A
    Stolfi, J
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2001, 11 (03) : 267 - 290
  • [33] Covering a sphere with retroreflectors
    Clouse, D
    Liebe, CC
    Padgett, C
    Bartman, R
    2001 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-7, 2001, : 1495 - 1506
  • [34] Packing of Incongruent Circles on the Sphere
    August Florian
    Monatshefte für Mathematik, 2001, 133 : 111 - 129
  • [35] Packing of twinned circles on a sphere
    Tarnai, T.
    Fowler, P. W.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2076): : 3733 - 3747
  • [36] THE OPTIMAL PACKING OF CIRCLES ON A SPHERE
    CLARE, BW
    KEPERT, DL
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 6 (04) : 325 - 349
  • [37] Packing of incongruent circles on the sphere
    Florian, A
    MONATSHEFTE FUR MATHEMATIK, 2001, 133 (02): : 111 - 129
  • [38] Covering the crosspolytope by equal balls
    Böröczky Jr. K.
    Fábián I.
    Wintsche G.
    Periodica Mathematica Hungarica, 2006, 53 (1-2) : 103 - 113
  • [39] Covering an ellipsoid with equal balls
    Dumer, Ilya
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (08) : 1667 - 1676
  • [40] 6 CIRCLES EQUAL TO CIRCUMCIRCLE OF TRIANGLE
    DARLING, JF
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (02): : 211 - &