Packing of incongruent circles on the sphere

被引:4
|
作者
Florian, A [1 ]
机构
[1] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2001年 / 133卷 / 02期
关键词
packing of circles; density; solid packing;
D O I
10.1007/s006050170026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide an upper bound to the density of a packing of circles on the sphere, with radii selected from a given finite set. This bound is precise, e.g. for the system of incircles of Archimedean tilings (4,4, n) with n greater than or equal to 6. A generalisation to the weighted density of packing is applied to problems of solidity of a packing of circles. The simple concept of solidity, was introduced by L, Fejes Toth [6]. In particular, it is proved that the incircles of the faces of the Archimedean tilings (4,6,6), (4, 6, 8) and (4, 6, 10) form solid packings.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 50 条
  • [1] Packing of Incongruent Circles on the Sphere
    August Florian
    Monatshefte für Mathematik, 2001, 133 : 111 - 129
  • [2] Remarks on my paper: packing of incongruent circles on the sphere
    August Florian
    Monatshefte für Mathematik, 2007, 152 : 39 - 43
  • [3] Remarks on my paper: packing of incongruent circles on the sphere
    Florian, August
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (01): : 39 - 43
  • [4] LOWER DECKS OF A SPHERE WITH INCONGRUENT CIRCLES
    BLIND, G
    ARCHIV DER MATHEMATIK, 1971, 21 (06) : 660 - &
  • [5] Packing of twinned circles on a sphere
    Tarnai, T.
    Fowler, P. W.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2076): : 3733 - 3747
  • [6] THE OPTIMAL PACKING OF CIRCLES ON A SPHERE
    CLARE, BW
    KEPERT, DL
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 6 (04) : 325 - 349
  • [7] Packing regular triplets of circles on a sphere
    Fowler, PW
    Tarnai, T
    Kabai, S
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2060): : 2355 - 2367
  • [8] THE DENSEST PACKING OF EQUAL CIRCLES ON A SPHERE
    KOTTWITZ, DA
    ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 : 158 - 165
  • [9] THE CLOSEST PACKING OF EQUAL CIRCLES ON A SPHERE
    CLARE, BW
    KEPERT, DL
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 405 (1829): : 329 - 344
  • [10] Packing circles of two different sizes on the sphere
    Heppes, A
    Kertesz, G
    INTUITIVE GEOMETRY, 1997, 6 : 357 - 365