Packing of incongruent circles on the sphere

被引:4
|
作者
Florian, A [1 ]
机构
[1] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2001年 / 133卷 / 02期
关键词
packing of circles; density; solid packing;
D O I
10.1007/s006050170026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide an upper bound to the density of a packing of circles on the sphere, with radii selected from a given finite set. This bound is precise, e.g. for the system of incircles of Archimedean tilings (4,4, n) with n greater than or equal to 6. A generalisation to the weighted density of packing is applied to problems of solidity of a packing of circles. The simple concept of solidity, was introduced by L, Fejes Toth [6]. In particular, it is proved that the incircles of the faces of the Archimedean tilings (4,6,6), (4, 6, 8) and (4, 6, 10) form solid packings.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 50 条
  • [31] RANDOM PACKING OF CIRCLES IN A PLANE
    SUTHERLAND, DN
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1977, 60 (01) : 96 - 102
  • [32] Packing circles within ellipses
    Birgin, Ernesto G.
    Bustamante, Luis Henrique
    Callisaya, Hector Flores
    Martinez, Jose Mario
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2013, 20 (03) : 365 - 389
  • [33] SPHERE PACKING
    SIGRIST, F
    MATHEMATICAL INTELLIGENCER, 1983, 5 (03): : 34 - 38
  • [34] EXPONENT OF APOLLONIAN PACKING OF CIRCLES
    FOSTER, DME
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 3 (FEB): : 281 - &
  • [35] Packing equal circles in a square
    Ament, P
    Blind, G
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2000, 36 (3-4) : 313 - 316
  • [36] RANDOM PACKING OF CIRCLES IN A PLANE
    KAUSCH, HH
    FESKO, DG
    TSCHOEGL, NW
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1971, 37 (03) : 603 - &
  • [37] Packing circles and spheres on surfaces
    Schiftner, Alexander
    Hoebinger, Mathias
    Wallner, Johannes
    Pottmann, Helmut
    ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05): : 1 - 8
  • [38] Covering the Sphere with Equal Circles
    Wimmer, Lienhard
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 57 (04) : 763 - 781
  • [39] A marker for circles on the sphere.
    Blaschke, Wilhelm
    MATHEMATISCHE ZEITSCHRIFT, 1926, 24 : 191 - 191
  • [40] Circles orthogonal to a given sphere
    Moore, CLE
    ANNALS OF MATHEMATICS, 1906, 8 : 57 - 72