Covering the Sphere with Equal Circles

被引:0
|
作者
Lienhard Wimmer
机构
[1] NTA Isny,
来源
关键词
Covering; Sphere; Equal circles; Schütte arrangement; Spherical arrangement; 52C15; 52C17; 51M16;
D O I
暂无
中图分类号
学科分类号
摘要
How has a sphere to be covered by n equal circles so that the angular radius of the circles will be as small as possible? In this note the problem is solved for n=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=8$$\end{document} and the combinatorial type of the solution for n=9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 9$$\end{document} is determined.
引用
收藏
页码:763 / 781
页数:18
相关论文
共 50 条
  • [41] Packing Equal Circles In a Damaged Square
    Zhuang, Xinyi
    Yan, Ling
    Chen, Liang
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [42] Extremum properties of lattice packing and covering with circles
    Gruber, Peter M.
    ADVANCES IN GEOMETRY, 2016, 16 (01) : 93 - 110
  • [43] Optimization of multiple covering of a bounded set with circles
    Galiev, Sh. I.
    Karpova, M. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (04) : 721 - 732
  • [44] COVERING RADIUS - IMPROVING ON THE SPHERE-COVERING BOUND
    SIMONIS, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 357 : 377 - 385
  • [45] Covering a compact polygonal set by identical circles
    Y. G. Stoyan
    V. M. Patsuk
    Computational Optimization and Applications, 2010, 46 : 75 - 92
  • [46] Optimization of multiple covering of a bounded set with circles
    Sh. I. Galiev
    M. A. Karpova
    Computational Mathematics and Mathematical Physics, 2010, 50 : 721 - 732
  • [47] Bounded holomorphic functions covering no concentric circles
    Dubinin V.N.
    Journal of Mathematical Sciences, 2015, 207 (6) : 825 - 831
  • [48] Thinnest Covering of the Euclidean Plane with Incongruent Circles
    Dorninger, Dietmar
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2017, 5 (01): : 40 - 46
  • [49] Covering a compact polygonal set by identical circles
    Stoyan, Y. G.
    Patsuk, V. M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (01) : 75 - 92
  • [50] Packing regular triplets of circles on a sphere
    Fowler, PW
    Tarnai, T
    Kabai, S
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2060): : 2355 - 2367