Binomial proportion;
information matrix;
identifiability;
non-ignorable non-response;
variance estimation;
62F12;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Non-random missing data poses serious problems in longitudinal studies. The binomial distribution parameter becomes to be unidentifiable without any other auxiliary information or assumption when it suffers from ignorable missing data. Existing methods are mostly based on the log-linear regression model. In this article, a model is proposed for longitudinal data with non-ignorable non-response. It is considered to use the pre-test baseline data to improve the identifiability of the post-test parameter. Furthermore, we derive the identified estimation (IE), the maximum likelihood estimation (MLE) and its associated variance for the posttest parameter. The simulation study based on the model of this paper shows that the proposed approach gives promising results.
机构:
Univ Calif Los Angeles, Sch Med, Dept Med, Los Angeles, CA 90024 USAUniv Calif Los Angeles, Sch Med, Dept Med, Los Angeles, CA 90024 USA
Tseng, Chi-hong
Elashoff, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Med & Publ Hlth, Dept Biomath & Biostat, Los Angeles, CA 90024 USAUniv Calif Los Angeles, Sch Med, Dept Med, Los Angeles, CA 90024 USA
Elashoff, Robert
Li, Ning
论文数: 0引用数: 0
h-index: 0
机构:
Cedars Sinai Med Ctr, Samuel Oschin Comprehens Canc Inst, Biostat Core, Los Angeles, CA 90048 USAUniv Calif Los Angeles, Sch Med, Dept Med, Los Angeles, CA 90024 USA
Li, Ning
Li, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90024 USAUniv Calif Los Angeles, Sch Med, Dept Med, Los Angeles, CA 90024 USA